Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(24): 13571-13579, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32482850

ABSTRACT

Synchronized beating of cilia on multiciliated cells (MCCs) generates a directional flow of mucus across epithelia. This motility requires a "9 + 2" microtubule (MT) configuration in axonemes and the unidirectional array of basal bodies of cilia on the MCCs. However, it is not fully understood what components are needed for central MT-pair assembly as they are not continuous with basal bodies in contrast to the nine outer MT doublets. In this study, we discovered that a homozygous knockdown mouse model for MT minus-end regulator calmodulin-regulated spectrin-associated protein 3 (CAMSAP3), Camsap3tm1a/tm1a , exhibited multiple phenotypes, some of which are typical of primary ciliary dyskinesia (PCD), a condition caused by motile cilia defects. Anatomical examination of Camsap3tm1a/tm1a mice revealed severe nasal airway blockage and abnormal ciliary morphologies in nasal MCCs. MCCs from different tissues exhibited defective synchronized beating and ineffective generation of directional flow likely underlying the PCD-like phenotypes. In normal mice, CAMSAP3 localized to the base of axonemes and at the basal bodies in MCCs. However, in Camsap3tm1a/tm1a , MCCs lacked CAMSAP3 at the ciliary base. Importantly, the central MT pairs were missing in the majority of cilia, and the polarity of the basal bodies was disorganized. These phenotypes were further confirmed in MCCs of Xenopus embryos when CAMSAP3 expression was knocked down by morpholino injection. Taken together, we identified CAMSAP3 as being important for the formation of central MT pairs, proper orientation of basal bodies, and synchronized beating of motile cilia.


Subject(s)
Basal Bodies/metabolism , Cilia/metabolism , Ciliary Motility Disorders/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Animals , Axoneme/metabolism , Cell Polarity , Ciliary Motility Disorders/genetics , Epithelial Cells/metabolism , Humans , Mice , Mice, Knockout , Microtubule-Associated Proteins/genetics , Microtubules/genetics , Xenopus
2.
Am J Hum Genet ; 104(2): 229-245, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30665704

ABSTRACT

Primary ciliary dyskinesia (PCD) is a genetic disorder in which impaired ciliary function leads to chronic airway disease. Exome sequencing of a PCD subject identified an apparent homozygous frameshift variant, c.887_890delTAAG (p.Val296Glyfs∗13), in exon 5; this frameshift introduces a stop codon in amino acid 308 of the growth arrest-specific protein 2-like 2 (GAS2L2). Further genetic screening of unrelated PCD subjects identified a second proband with a compound heterozygous variant carrying the identical frameshift variant and a large deletion (c.867_∗343+1207del; p.?) starting in exon 5. Both individuals had clinical features of PCD but normal ciliary axoneme structure. In this research, using human nasal cells, mouse models, and X.laevis embryos, we show that GAS2L2 is abundant at the apical surface of ciliated cells, where it localizes with basal bodies, basal feet, rootlets, and actin filaments. Cultured GAS2L2-deficient nasal epithelial cells from one of the affected individuals showed defects in ciliary orientation and had an asynchronous and hyperkinetic (GAS2L2-deficient = 19.8 Hz versus control = 15.8 Hz) ciliary-beat pattern. These results were recapitulated in Gas2l2-/- mouse tracheal epithelial cell (mTEC) cultures and in X. laevis embryos treated with Gas2l2 morpholinos. In mice, the absence of Gas2l2 caused neonatal death, and the conditional deletion of Gas2l2 impaired mucociliary clearance (MCC) and led to mucus accumulation. These results show that a pathogenic variant in GAS2L2 causes a genetic defect in ciliary orientation and impairs MCC and results in PCD.


Subject(s)
Cilia/pathology , Ciliary Motility Disorders/genetics , Ciliary Motility Disorders/physiopathology , Microfilament Proteins/deficiency , Microtubule-Associated Proteins/deficiency , Xenopus Proteins/deficiency , Animals , Ciliary Motility Disorders/pathology , Disease Models, Animal , Exons/genetics , Female , Gene Deletion , Genes, Lethal , Humans , Male , Mice , Mice, Knockout , Microfilament Proteins/genetics , Microtubule-Associated Proteins/genetics , Phenotype , Rotation , Xenopus/embryology , Xenopus/genetics , Xenopus Proteins/genetics
3.
J Cell Biol ; 217(5): 1633-1641, 2018 05 07.
Article in English | MEDLINE | ID: mdl-29514918

ABSTRACT

Most epithelial cells polarize along the axis of the tissue, a feature known as planar cell polarity (PCP). The initiation of PCP requires cell-cell signaling via the noncanonical Wnt/PCP pathway. Additionally, changes in the cytoskeleton both facilitate and reflect this polarity. We have identified CLAMP/Spef1 as a novel regulator of PCP signaling. In addition to decorating microtubules (MTs) and the ciliary rootlet, a pool of CLAMP localizes at the apical cell cortex. Depletion of CLAMP leads to the loss of PCP protein asymmetry, defects in cilia polarity, and defects in the angle of cell division. Additionally, depletion of CLAMP leads to a loss of the atypical cadherin-like molecule Celrs2, suggesting that CLAMP facilitates the stabilization of junctional interactions responsible for proper PCP protein localization. Depletion of CLAMP also affects the polarized organization of MTs. We hypothesize that CLAMP facilitates the establishment of cell polarity and promotes the asymmetric accumulation of MTs downstream of the establishment of proper PCP.


Subject(s)
Cell Polarity , Cilia/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Signal Transduction , Xenopus Proteins/metabolism , Xenopus laevis/metabolism , Animals , Cell Division , Cell Membrane/metabolism , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...