Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Biomed Anal ; 209: 114491, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34875571

ABSTRACT

In the scope of 100% in-line quality control and real-time release of pharmaceutical tablets, the authors present a flexible inspection module for in-line tablet analysis with integrated multipoint near-infrared (NIR) spectroscopy and 3D microwave resonance technology (3D MRT). Via an industrial case study on Diclofenac Sodium tablets, the abilities of this versatile process analytical technology (PAT) tool are presented. It is demonstrated that the combination of Diclofenac concentration prediction via NIR spectroscopy and mass prediction via 3D MRT allow to estimate the dosage of each individual tablet. Single sample repetition tests were performed on 5 tablets, measured 10 times on three different days. A high accuracy and precision of prediction was shown, with an average standard deviation below 0.5 mg. The inspection run demonstrated the added value of such inspection and sorting strategies based on the calculated dosage of individual tablets.


Subject(s)
Microwaves , Spectroscopy, Near-Infrared , Diclofenac , Quality Control , Tablets , Technology, Pharmaceutical
2.
Int J Pharm ; 602: 120594, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33857586

ABSTRACT

In-line measurements of low dose blends in the feed frame of a tablet press were performed for API concentration levels as low as 0.10% w/w. The proposed methodology utilizes the advanced sampling capabilities of a Spatially Resolved Near-Infrared (SR-NIR) probe to develop Partial Least-Squares calibration models. The fast acquisition speed of multipoint spectra allowed the evaluation of different numbers of co-adds and feed frame paddle speeds to establish the optimum conditions of data collection to predict low potency blends. The interaction of the feed frame paddles with the SR-NIR probe was captured with high resolution and allowed the implementation of a spectral data selection criterion to remove the effect of the paddles from the calibration and testing process. The method demonstrated accuracy and robustness when predicting drug concentrations across different feed frame paddle speeds.


Subject(s)
Spectroscopy, Near-Infrared , Calibration , Least-Squares Analysis , Powders , Tablets
3.
Anal Chem ; 90(7): 4354-4362, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29528218

ABSTRACT

Near-infrared chemical imaging (NIR-CI) is an emerging tool for process monitoring because it combines the chemical selectivity of vibrational spectroscopy with spatial information. Whereas traditional near-infrared spectroscopy is an attractive technique for water content determination and solid-state investigation of lyophilized products, chemical imaging opens up possibilities for assessing the homogeneity of these critical quality attributes (CQAs) throughout the entire product. In this contribution, we aim to evaluate NIR-CI as a process analytical technology (PAT) tool for at-line inspection of continuously freeze-dried pharmaceutical unit doses based on spin freezing. The chemical images of freeze-dried mannitol samples were resolved via multivariate curve resolution, allowing us to visualize the distribution of mannitol solid forms throughout the entire cake. Second, a mannitol-sucrose formulation was lyophilized with variable drying times for inducing changes in water content. Analyzing the corresponding chemical images via principal component analysis, vial-to-vial variations as well as within-vial inhomogeneity in water content could be detected. Furthermore, a partial least-squares regression model was constructed for quantifying the water content in each pixel of the chemical images. It was hence concluded that NIR-CI is inherently a most promising PAT tool for continuously monitoring freeze-dried samples. Although some practicalities are still to be solved, this analytical technique could be applied in-line for CQA evaluation and for detecting the drying end point.

4.
Int J Pharm ; 529(1-2): 678-693, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28720539

ABSTRACT

Twin-screw wet granulation is gaining increasing interest within the pharmaceutical industry for the continuous manufacturing of solid oral dosage forms. However, limited prior fundamental physical understanding has been generated relating to the granule formation mechanisms and kinetics along the internal compartmental length of a twin-screw granulator barrel, and about how process settings, barrel screw configuration and formulation properties such as particle size, density and surface properties influence these mechanisms. One of the main reasons for this limited understanding is that experimental data is generally only collected at the exit of the twin-screw granulator barrel although the granule formation occurs spatially along the internal length of the barrel. The purpose of this study is to analyze the twin-screw wet granulation process using both hydrophilic and hydrophobic formulations, manufactured under different process settings such as liquid-to-solid ratio, mass throughput and screw speed, in such a way that the mechanisms occurring in the individual granulator barrel compartments (i.e., the wetting and different conveying and kneading compartments) and their impact upon granule formation are understood. To achieve this, a unique experimental setup was developed allowing granule characteristic data-collection such as size, shape, liquid and porosity distribution at the different compartments along the length of the granulator barrel. Moreover, granule characteristic information per granule size class was determined. The experimental results indicated that liquid-to-solid ratio is the most important factor dictating the formation of the granules and their corresponding properties, by regulating the degree of aggregation and breakage in the different compartments along the internal length of the twin-screw granulator barrel. Collecting appropriate and detailed experimental data about granule formation along the internal length of the granulator barrel is thus crucial for gaining fundamental physical understanding of the twin-screw wet granulation process.


Subject(s)
Chemistry, Pharmaceutical , Pharmaceutical Preparations , Particle Size , Technology, Pharmaceutical
5.
Int J Pharm ; 512(1): 158-167, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-27452420

ABSTRACT

Granules with release-sustaining properties were developed by twin screw hot melt granulation (HMG) using a combination of stearic acid (SA) and high molecular weight polyethylene oxide (PEO) as matrix for a highly water soluble model drug, metoprolol tartrate (MPT). Earlier studies demonstrated that mixing molten SA and PEO resulted in hydrogen bond formation between hydroxyl groups of fatty acid molecules and ether groups in PEO chains. These molecular interactions might be beneficial in order to elevate the sustained release effect of drugs from a SA/PEO matrix. This study aims to investigate the continuous twin screw melt granulation technique to study the impact of a SA/PEO matrix on the dissolution rate of a highly water soluble drug (MPT). Decreasing the SA/PEO ratio improved the release-sustaining properties of the matrix. The solid state of the granules was characterized using differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR), X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared (FTIR) and near infrared chemical imaging (NIR-CI) in order to understand the dissolution behavior. The results revealed a preferential interaction of the MPT molecules with stearic acid impeding the PEO to form hydrogen bonds with the stearic acid chains. However, this allowed the PEO chains to recrystallize inside the stearic acid matrix after granulation, hence, elevating the release-sustaining characteristics of the formulation.


Subject(s)
Metoprolol/pharmacokinetics , Polyethylene Glycols/chemistry , Stearic Acids/chemistry , Crystallization , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Drug Compounding/methods , Drug Liberation , Drug Stability , Metoprolol/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...