Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 21(12): 3743-8, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21561767

ABSTRACT

Ponatinib (AP24534) was previously identified as a pan-BCR-ABL inhibitor that potently inhibits the T315I gatekeeper mutant, and has advanced into clinical development for the treatment of refractory or resistant CML. In this study, we explored a novel series of five and six membered monocycles as alternate hinge-binding templates to replace the 6,5-fused imidazopyridazine core of ponatinib. Like ponatinib, these monocycles are tethered to pendant toluanilides via an ethynyl linker. Several compounds in this series displayed excellent in vitro potency against both native BCR-ABL and the T315I mutant. Notably, a subset of inhibitors exhibited desirable PK and were orally active in a mouse model of T315I-driven CML.


Subject(s)
Alkynes/chemical synthesis , Alkynes/pharmacology , Aniline Compounds/chemical synthesis , Fusion Proteins, bcr-abl/antagonists & inhibitors , Toluene/chemical synthesis , Administration, Oral , Alkynes/chemistry , Aniline Compounds/chemistry , Aniline Compounds/pharmacology , Animals , Cyclization , Disease Models, Animal , Fusion Proteins, bcr-abl/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Mice , Models, Molecular , Molecular Structure , Mutation , Rats , Structure-Activity Relationship , Toluene/chemistry , Toluene/pharmacology
2.
J Med Chem ; 53(12): 4701-19, 2010 Jun 24.
Article in English | MEDLINE | ID: mdl-20513156

ABSTRACT

In the treatment of chronic myeloid leukemia (CML) with BCR-ABL kinase inhibitors, the T315I gatekeeper mutant has emerged as resistant to all currently approved agents. This report describes the structure-guided design of a novel series of potent pan-inhibitors of BCR-ABL, including the T315I mutation. A key structural feature is the carbon-carbon triple bond linker which skirts the increased bulk of Ile315 side chain. Extensive SAR studies led to the discovery of development candidate 20g (AP24534), which inhibited the kinase activity of both native BCR-ABL and the T315I mutant with low nM IC(50)s, and potently inhibited proliferation of corresponding Ba/F3-derived cell lines. Daily oral administration of 20g significantly prolonged survival of mice injected intravenously with BCR-ABL(T315I) expressing Ba/F3 cells. These data, coupled with a favorable ADME profile, support the potential of 20g to be an effective treatment for CML, including patients refractory to all currently approved therapies.


Subject(s)
Antineoplastic Agents/chemical synthesis , Fusion Proteins, bcr-abl/antagonists & inhibitors , Imidazoles/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , Pyridazines/chemical synthesis , Administration, Oral , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Blood-Brain Barrier/metabolism , Cell Line, Tumor , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Fusion Proteins, bcr-abl/genetics , Imidazoles/pharmacokinetics , Imidazoles/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/mortality , Mice , Mice, SCID , Models, Molecular , Mutation , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Pyridazines/pharmacokinetics , Pyridazines/pharmacology , Rats
3.
J Med Chem ; 52(15): 4743-56, 2009 Aug 13.
Article in English | MEDLINE | ID: mdl-19572547

ABSTRACT

A novel series of potent dual Src/Abl kinase inhibitors based on a 9-(arenethenyl)purine core has been identified. Unlike traditional dual Src/Abl inhibitors targeting the active enzyme conformation, these inhibitors bind to the inactive, DFG-out conformation of both kinases. Extensive SAR studies led to the discovery of potent and orally bioavailable inhibitors, some of which demonstrated in vivo efficacy. Once-daily oral administration of inhibitor 9i (AP24226) significantly prolonged the survival of mice injected intravenously with wild type Bcr-Abl expressing Ba/F3 cells at a dose of 10 mg/kg. In a separate model, oral administration of 9i to mice bearing subcutaneous xenografts of Src Y527F expressing NIH 3T3 cells elicited dose-dependent tumor shrinkage with complete tumor regression observed at the highest dose. Notably, several inhibitors (e.g., 14a, AP24163) exhibited modest cellular potency (IC50 = 300-400 nM) against the Bcr-Abl mutant T315I, a variant resistant to all currently marketed therapies for chronic myeloid leukemia.


Subject(s)
Drug Design , Protein Kinase Inhibitors/chemical synthesis , Proto-Oncogene Proteins c-abl/antagonists & inhibitors , Purines/chemical synthesis , src-Family Kinases/antagonists & inhibitors , Animals , Female , Humans , K562 Cells , Mice , NIH 3T3 Cells , Protein Conformation , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-abl/chemistry , Purines/pharmacology , Rats , Structure-Activity Relationship , src-Family Kinases/chemistry
4.
Drug Metab Dispos ; 32(1): 105-12, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14709627

ABSTRACT

Azamulin [14-O-(5-(2-amino-1,3,4-triazolyl)thioacetyl)-dihydromutilin] is an azole derivative of the pleuromutilin class of antiinfectives. We tested the inhibition potency of azamulin toward 18 cytochromes P450 using human liver microsomes or microsomes from insect cells expressing single isoforms. In a competitive inhibition model, IC(50) values for CYP3A (0.03-0.24 microM) were at least 100-fold lower than all other non-CYP3A enzymes except CYP2J2 ( approximately 50-fold lower). The IC(50) value with heterologously expressed CYP3A4 was 15-fold and 13-fold less than those of CYP3A5 and CYP3A7, respectively. The reference inhibitor ketoconazole was less selective and exhibited potent inhibition (IC(50) values <10 microM) for CYP1A1, CYP1B1, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP4F2, and CYP4F12. Inhibition of CYP3A by azamulin appeared sigmoidal and well behaved with the substrates 7-benzyloxy-4-trifluoromethylcoumarin, testosterone, and midazolam. Preincubation of 4.8 microM azamulin in the presence of NADPH for 10 min inhibited approximately 95% of testosterone 6beta-hydroxylase activity compared with preincubation in the absence of NADPH. Catalytic activities of CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP2E1 were unaffected by similar experiments. Incubation of azamulin with heterologously expressed CYP3A4 yielded a type I binding spectrum with a spectral dissociation constant of 3.5 microM, whereas no interaction was found with CYP2D6. Azamulin exhibited good chemical stability when stored in acetonitrile for up to 12 days. Aqueous solubility was found to be >300 microM. Azamulin represents an important new chemical tool for use in characterizing the contribution of CYP3A to the metabolism of xenobiotics.


Subject(s)
Anti-Infective Agents/pharmacology , Bridged-Ring Compounds/pharmacology , Cytochrome P-450 Enzyme Inhibitors , Enzyme Inhibitors/pharmacology , Triazoles/pharmacology , Cytochrome P-450 Enzyme System/chemistry , Fluorometry , Humans , In Vitro Techniques , Ketoconazole/pharmacology , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology , NADP/pharmacology , Pleurotus/drug effects , Pleurotus/enzymology , Solubility , Steroid Hydroxylases/antagonists & inhibitors , Substrate Specificity , Xenobiotics/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...