Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Type of study
Publication year range
1.
Neurobiol Stress ; 13: 100245, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33344701

ABSTRACT

Previously, a sub-population of defeated anesthetized rats (Dlow) was characterized by persistent low blood levels of brain-derived neurotrophic factor (BDNF) at day 29 and autonomic alteration at day 30 after social challenge, while the other population (Dhigh) was similar to non-defeated (ND) animals. The aims of this study were to determine the time-course of autonomic dysfunction in awake animals, and whether Dhigh and/or Dlow were vulnerable to cardiac events. Defeated animals were exposed to four daily episodes of social defeats from day 1 to day 4. At day 30, anesthetized Dlow displayed decreased experimental and spontaneous reflex responses reflecting lower parasympathetic efficiency. In addition, Dlow but not Dhigh were characterized by left ventricular hypertrophy at day 30. Telemetric recordings revealed that Dlow had increased low frequency-to-high frequency ratio (LF/HF) and diastolic (DBP) and systolic (SBP) blood pressure, associated with decreased HF and spontaneous baroreflex responses (BRS) from day 3 to day 29. LF/HF, DBP and SBP recovered at day 5, and HF and BRS recovered at day 15 in Dhigh. Ventricular premature beats (VPBs) occurred in Dlow and Dhigh animals from day 5. Time course of VBP fluctuations in Dhigh mirrored that of HF and BRS, but not that of LF/HF, DBP and SBP. These results suggest that a psychosocial stress associated to low serum BDNF levels can lead to vulnerability to persistent autonomic dysfunction, cardiac hypertrophy and ventricular ectopic beats. The parasympathetic recovery seen in Dhigh may provide protection against cardiac events in this population.

2.
Eur J Pharmacol ; 861: 172595, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31401156

ABSTRACT

After social stress, rats become vulnerable to depression, and this state is characterized by persistent low blood levels of brain-derived neurotrophic factor (BDNF). The aim of this study was to determine whether low BDNF levels are associated with long term autonomic changes. Defeated animals were subjected to four daily episodes of social defeats. Twenty five days later, defeated rats with low BDNF levels (Dlow) still displayed elevated sympathetic tone (as indicated by an elevated low frequency to high frequency ratio (LF/HF) in heart rate) and elevated blood pressure, as well as reduced baroreflex sensitivity (BRS). In contrast, those with higher BDNF levels (Dhigh) similar to controls, did not. Dlow animals persistent cardiovascular changes were abolished by acute inhibition of the dorsomedial nucleus of the hypothalamus (DMH). These cardiovascular changes were also prevented by chronic sub-cutaneous osmotic infusion of losartan, an angiotensin II type 1 receptor (AT1) receptor antagonist, started immediately after social defeat. In conclusion, the results show that greater vulnerability to stress consequences following a traumatic event is associated with an elevated LF/HF ratio, a persistent high blood pressure and a low BRS, all due to an AT1 receptor activation.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Cardiovascular System/metabolism , Interpersonal Relations , Receptor, Angiotensin, Type 1/metabolism , Stress, Psychological/metabolism , Animals , Autonomic Nervous System/drug effects , Autonomic Nervous System/physiopathology , Behavior, Animal/drug effects , Cardiovascular System/drug effects , Cardiovascular System/physiopathology , Disease Susceptibility , Heart Rate/drug effects , Losartan/pharmacology , Male , Osmosis/drug effects , Rats , Rats, Sprague-Dawley , Stress, Psychological/physiopathology , Stress, Psychological/psychology
3.
Neuromodulation ; 22(6): 703-708, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30786100

ABSTRACT

OBJECTIVES: High-frequency (kHz) stimulation of preganglionic pelvic nerve afferents can inhibit voiding in both anesthetized and conscious rats. The afferents travel via the S1 sacral nerve root, which is easier to access than the distal pelvic nerve fibers within the abdominal cavity. We therefore investigated whether voiding could be inhibited by high-frequency stimulation at S1 and how this compared to distal pelvic nerve stimulation. METHODS: Urethane-anesthetized rats were instrumented to record bladder pressure and abdominal wall electromyogram and to stimulate the distal preganglionic pelvic nerve bundle and S1 sacral root. Saline was infused continuously into the bladder to evoke repeated voiding. Stimulation was initiated within 1-2 sec of the onset of the steep rise in bladder pressure signaling an imminent void. RESULTS: In six rats, stimulation of the distal pelvic nerve bundle (1-3 kHz sinusoidal waveform 1 mA, 60 sec) supressed the occurrence of an imminent void. Voiding resumed within 70 ± 13.0 sec (mean ± SEM) of stopping stimulation. Stimulation (using the same parameters) of the S1 root at the level of the sacral foramen suppressed voiding for the entire stimulation period in three rats and deferred voiding for 35-56 sec (mean 44.0 ± 3.2 sec) in the remaining three. Stimulation at either site when the bladder was approximately half full, as estimated from previous intervoid intervals, had no effect on voiding. CONCLUSIONS: This preliminary study provides proof-of-concept for the sacral root as an accessible target for high-frequency stimulation that may be developed as an "on demand" neuromodulation paradigm to suppress unwanted urinary voids. CONFLICT OF INTEREST: The authors reported no conflict of interest.


Subject(s)
Anesthetics, Intravenous/administration & dosage , Electric Stimulation Therapy/methods , Sacrum/innervation , Sacrum/physiology , Spinal Nerve Roots/physiology , Urination/physiology , Animals , Female , Rats , Rats, Wistar , Sacrum/surgery , Spinal Nerve Roots/surgery , Urethane/administration & dosage
4.
Front Physiol ; 9: 437, 2018.
Article in English | MEDLINE | ID: mdl-29760663

ABSTRACT

Female Wistar rats were instrumented to record bladder pressure and to stimulate the left pelvic nerve. Repeated voids were induced by continuous infusion of saline into the bladder (11.2 ml/h) via a T-piece in the line to the bladder catheter. In each animal tested (n = 6) high frequency pelvic nerve stimulation (1-3 kHz, 1-2 mA sinusoidal waveform for 60 s) applied within 2 s of the onset of a sharp rise in bladder pressure signaling an imminent void was able to inhibit micturition. Voiding was modulated in three ways: (1) Suppression of voiding (four rats, n = 13 trials). No fluid output or a very small volume of fluid expelled (<15% of the volume expected based on the mean of the previous 2 or 3 voids). Voiding suppressed for the entirety of the stimulation period (60 s) and resumed within 37 s of stopping stimulation. (2) Void deferred (four rats, n = 6 trials). The imminent void was suppressed (no fluid expelled) but a void occurred later in the stimulation period (12-44 s, mean 24.5 ± 5.2 s after the onset of the stimulation). (3) Reduction in voided volume (five rats, n = 20 trials). Voiding took place but the volume of fluid voided was 15-80% (range 21.8-77.8%, mean 45.3 ± 3.6%) of the volume expected from the mean of the preceding two or three voids. Spontaneous voiding resumed within 5 min of stopping stimulation. Stimulation during the filling phase in between voids had no effect. The experiments demonstrate that conditional high frequency stimulation of the pelvic nerve started at the onset of an imminent void can inhibit voiding. The effect was rapidly reversible and was not accompanied by any adverse behavioral side effects.

5.
Respir Physiol Neurobiol ; 247: 188-191, 2018 01.
Article in English | MEDLINE | ID: mdl-26590324

ABSTRACT

Recent observations from our group seem to indicate that repeated stress-evoked dorsomedian hypothalamic nucleus (DMH) activation in rats can lead to persistent bradypnea. One possibility was that respiratory responses to peripheral chemoreceptor activation were reduced by DMH stimulation. In the present study, we therefore investigated the effect of minimal supra-threshold DMH stimulation on respiratory carotid chemoreflex responses. For this purpose, the chemoreflex was activated by potassium cyanide (KCN, 40µg/rat, i.v.) during electrical and chemical stimulation of the DMH. In both situations, changes in breathing frequency but not tidal volume responses to KCN administration were reduced. These findings suggest that low DMH neurotransmission negatively affects respiratory chemoreflex responses and may be involved in stress-induced bradypnea.


Subject(s)
Chemoreceptor Cells/physiology , Dorsomedial Hypothalamic Nucleus/physiology , Reflex/physiology , Respiration , Animals , Bicuculline/pharmacology , Dorsomedial Hypothalamic Nucleus/drug effects , Electric Stimulation , GABA-A Receptor Antagonists/pharmacology , Male , Microinjections , Potassium Cyanide , Rats, Sprague-Dawley , Tachypnea/physiopathology , Tidal Volume
6.
Neuropharmacology ; 128: 152-167, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28987939

ABSTRACT

Recent studies have demonstrated that a mild stimulation of the dorsomedian nucleus of the hypothalamus (DMH), a defense area, induces the inhibition of the carotid chemoreflex tachypnea. DMH activation reduces the cardiac chemoreflex response via the dorsolateral part of the periaqueductal grey matter (dlPAG) and serotonin receptors (5-HT3 subtype) in the nucleus tractus solitarius (NTS). The objectives of this study were to assess whether dlPAG and subsequent NTS 5-HT3 receptors are involved in chemoreflex tachypnea inhibition during mild activation of the DMH. For this purpose, peripheral chemoreflex was activated with potassium cyanide (KCN, 40 µg/rat, i.v.) during electrical and chemical minimal supra-threshold (mild) stimulation of the dlPAG or DMH. In both situations, changes in respiratory frequency (RF) following KCN administration were reduced. Moreover, pharmacological blockade of the dlPAG prevented DMH-induced KCN tachypnea inhibition. Activation of NTS 5-HT3 receptors also reduced chemoreflex tachypnea in a dose-dependent manner. In addition, blockade of NTS 5-HT3 receptors with granisetron (2.5 but not 1.25 mM), or the use of mice lacking the 5-HT3a receptor (5-HT3a KO), prevented dlPAG-induced KCN reductions in RF. A respiratory hypothalamo-midbrain-medullary pathway (HMM) therefore plays a crucial role in the inhibition of the hyperventilatory response to carotid chemoreflex.


Subject(s)
Baroreflex/drug effects , Chemoreceptor Cells/drug effects , Enzyme Inhibitors/pharmacology , Potassium Cyanide/pharmacology , Respiration/drug effects , Adrenal Medulla , Animals , Biguanides/pharmacology , Dose-Response Relationship, Drug , Hypothalamus/drug effects , Hypothalamus/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neural Pathways/drug effects , Neural Pathways/physiology , Rats , Rats, Sprague-Dawley , Receptors, Serotonin, 5-HT3/deficiency , Receptors, Serotonin, 5-HT3/genetics , Serotonin Receptor Agonists/pharmacology , Solitary Nucleus/drug effects , Solitary Nucleus/physiology
7.
Br J Pharmacol ; 174(15): 2471-2483, 2017 08.
Article in English | MEDLINE | ID: mdl-28493335

ABSTRACT

BACKGROUND AND PURPOSE: It has recently been suggested that 5-HT3 receptor blockade enhances the efficacy of selective 5-HT (serotonin) reuptake inhibitor (SSRI) antidepressants and may reverse stress-induced deficits in rodents. EXPERIMENTAL APPROACH: To further explore this hypothesis, we used mice lacking the 5-HT3 receptor (Htr3a KO) and their wild-type (WT) controls to assess their response in behavioural paradigms relevant to anxiety and depression. Mice were studied under basal, antidepressant treatments and chronic social defeat stress (CSDS) conditions. KEY RESULTS: In basal conditions, Htr3a KO mice displayed anxiolytic- and antidepressant-like behaviours in the elevated plus maze, the social interaction and the forced swim tests (FST), but behaved as WT mice in response to acute citalopram in the FST. However, the effects of fluoxetine were blunted in Htr3a KO mice in these same tests. In an in vitro electrophysiological paradigm, a low-dose citalopram treatment triggered 5-HT1A receptor desensitization only in the dorsal raphe nucleus of Htr3a KO, although a high dose desensitized 5-HT1A autoreceptor function equally in Htr3a KO and WT mice, suggesting that citalopram may become effective at lower doses when 5-HT3 receptors are inactivated. In addition, Htr3a deletion blocked CSDS-induced modification in the cortical expression of two genes involved in oxidative stress, CaMKIIa and SOD1. CONCLUSIONS AND IMPLICATIONS: Taken together, these data show that Htr3a deletion promotes SSRI efficacy and prevents the occurrence of stress-induced deleterious effects, suggesting that the 5-HT3 receptor may represent an interesting target for the treatment of stress-related disorders.


Subject(s)
Antidepressive Agents/pharmacology , Citalopram/pharmacology , Receptors, Serotonin, 5-HT3/metabolism , Social Behavior , Stress, Psychological/drug therapy , Animals , Antidepressive Agents/administration & dosage , Citalopram/administration & dosage , Dose-Response Relationship, Drug , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidative Stress/drug effects , Receptors, Serotonin, 5-HT3/deficiency
8.
Neurosci Biobehav Rev ; 74(Pt B): 423-432, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27131969

ABSTRACT

Serotonin plays a modulatory role in central control of the autonomic nervous system (ANS). The nucleus tractus solitarii (NTS) in the medulla is an area of viscerosomatic integration innervated by both central and peripheral serotonergic fibers. Influences from different origins therefore trigger the release of serotonin into the NTS and exert multiple influences on the ANS. This major influence on the ANS is also mediated by activation of several receptors in the NTS. In particular, the NTS is the central zone with the highest density of serotonin3 (5-HT3) receptors. In this review, we present evidence that 5-HT3 receptors in the NTS play a key role in one of the crucial homeostatic responses to acute and chronic stress: inhibitory modulation of the parasympathetic component of the ANS. The possible functional interactions of 5-HT3 receptors with GABAA and NK1 receptors in the NTS are also discussed.


Subject(s)
Solitary Nucleus , Humans , Receptors, Serotonin, 5-HT3 , Serotonin
9.
Am J Physiol Regul Integr Comp Physiol ; 311(2): R352-64, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27225946

ABSTRACT

Repeated social defeat in the rat induces long-lasting cardiovascular changes associated with anxiety. In this study, we investigated the effects of repeated social defeat on breathing. Respiratory rate was extracted from the respiratory sinus arrhythmia (RSA) peak frequency of the ECG in rats subjected to social defeat for 4 consecutive days. Respiratory rate was recorded under anesthesia 6 days (D+10) or 26 days (D+30) after social defeat. At D+10, defeated (D) rats spent less time in the open arms of the elevated plus maze test, had heavier adrenal glands, and displayed bradypnea, unlike nondefeated animals. At D+30, all signs of anxiety had disappeared. However, one-half of the rats still displayed bradypnea (DL rats, for low respiratory rate indicated by a lower RSA frequency), whereas those with higher respiratory rate (DH rats) had recovered. Acute blockade of the dorsomedial hypothalamus (DMH) or nucleus tractus solitarii (NTS) 5-HT3 receptors reversed bradypnea in all D rats at D+10 and in DL rats at D+30. Respiratory rate was also recorded in conscious animals implanted with radiotelemetric ECG probes. DH rats recovered between D+10 and D+18, whereas DL rats remained bradypneic until D+30. In conclusion, social stress induces sustained chronic bradypnea mediated by DMH neurons and NTS 5-HT3 receptors. These changes are associated with an anxiety-like state that persists until D+10, followed by recovery. However, bradypnea may persist in one-half of the population up until D+30, despite apparent recovery of the anxiety-like state.


Subject(s)
Anxiety/physiopathology , Behavior, Animal , Hypoventilation/physiopathology , Respiratory Rate , Social Behavior , Stress, Psychological , Animals , Male , Rats , Rats, Sprague-Dawley
10.
J Appl Physiol (1985) ; 118(2): 238-43, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25414243

ABSTRACT

Recording of breathing frequency is a basic requirement for respiratory physiology. Usual techniques are invasive and constraining. Respiratory sinus arrhythmia (RSA) has recently been demonstrated to be a simple way to obtain respiration frequency at rest. In this study, we investigated whether this correlation is also observed during activity. We first compared RSA to the respiration frequency obtained in anesthetized rats using a pneumotachograph connected to the trachea (TRF). Data analyses using Passing and Bablok regression confirmed the absence of bias and proportional differences. Accordingly, the Bland-Altman plot did not show any significant differences in data sets. In a second experiment, we compared RSA to the respiration frequency obtained in freely moving rats using a subpleurally inserted telemetric catheter (PRF). Comparisons between RSA and PRF revealed no significant difference in determination of respiratory rate with the two methods, although the bias and confidence interval were greater when activity increased. This was, however, not the case during short episodes of sniffing-like tachypnea, during which no matching RSA peaks were observed. In conclusion, RSA frequency reflected regular respiration frequency independently of the level of activity and appears to be a good surrogate to usual techniques.


Subject(s)
Motor Activity , Respiratory Rate , Respiratory Sinus Arrhythmia , Animals , Male , Rats, Sprague-Dawley , Telemetry
11.
J Physiol ; 591(7): 1871-87, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23297312

ABSTRACT

Anxiety disorders in humans reduce both the heart rate variability (HRV) and the sensitivity of the cardiac baroreflex (BRS). Both may contribute to sudden death. To elucidate the mechanisms underlying these alterations, male rats were subjected to social defeat sessions on four consecutive days. Five days later, the rats were found to be in an anxiety-like state. At this time point, we analysed HRV and BRS in the defeated rats, with or without treatment with the anxiolytic chlordiazepoxide (CDZ). HRV was reduced after social defeat, due to changes in the autonomic balance favouring the sympathetic over the parasympathetic component. Spontaneous and pharmacological baroreflex gains were also reduced. CDZ abolished anxiety-like symptoms as well as HRV and BRS alterations. Inhibition of the dorsomedial hypothalamus (DMH) with muscimol reversed all cardiovascular alterations, whereas blockade of the nucleus tractus solitarii (NTS) 5-HT3 receptor by the local or systemic administration of granisetron restored only baroreflex gains and the parasympathetic component of HRV. In conclusion, repeated social defeat in the rat lead to an anxiety-like state that was associated with lasting reduction in HRV and baroreflex gains. The DMH and the NTS were responsible for these chronic cardiovascular alterations. These regions may therefore constitute new therapeutic targets for reducing cardiac dysfunction and fibrillation in anxiety disorders.


Subject(s)
Anxiety/physiopathology , Hypothalamus/physiology , Solitary Nucleus/physiology , Adrenal Glands/growth & development , Animals , Baroreflex/physiology , Behavior, Animal , Blood Pressure , Dorsomedial Hypothalamic Nucleus/drug effects , Dorsomedial Hypothalamic Nucleus/physiology , Granisetron/pharmacology , Heart Rate , Male , Muscimol/pharmacology , Organ Size , Rats , Rats, Sprague-Dawley , Receptors, Serotonin, 5-HT3/physiology , Serotonin Antagonists/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...