Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Pharmacol Res ; 205: 107242, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823470

ABSTRACT

Targeting the CCL2/CCR2 chemokine axis has been shown to be effective at relieving pain in rodent models of inflammatory and neuropathic pain, therefore representing a promising avenue for the development of non-opioid analgesics. However, clinical trials targeting this receptor for inflammatory conditions and painful neuropathies have failed to meet expectations and have all been discontinued due to lack of efficacy. To overcome the poor selectivity of CCR2 chemokine receptor antagonists, we generated and characterized the function of intracellular cell-penetrating allosteric modulators targeting CCR2, namely pepducins. In vivo, chronic intrathecal administration of the CCR2-selective pepducin PP101 was effective in alleviating neuropathic and bone cancer pain. In the setting of bone metastases, we found that T cells infiltrate dorsal root ganglia (DRG) and induce long-lasting pain hypersensitivity. By acting on CCR2-expressing DRG neurons, PP101 attenuated the altered phenotype of sensory neurons as well as the neuroinflammatory milieu of DRGs, and reduced bone cancer pain by blocking CD4+ and CD8+ T cell infiltration. Notably, PP101 demonstrated its efficacy in targeting the neuropathic component of bone cancer pain, as evidenced by its anti-nociceptive effects in a model of chronic constriction injury of the sciatic nerve. Importantly, PP101-induced reduction of CCR2 signaling in DRGs did not result in deleterious tumor progression or adverse behavioral effects. Thus, targeting neuroimmune crosstalk through allosteric inhibition of CCR2 could represent an effective and safe avenue for the management of chronic pain.


Subject(s)
Chronic Pain , Ganglia, Spinal , Neuralgia , Receptors, CCR2 , Animals , Receptors, CCR2/antagonists & inhibitors , Receptors, CCR2/metabolism , Chronic Pain/drug therapy , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Neuralgia/drug therapy , Neuralgia/metabolism , Humans , Cancer Pain/drug therapy , Bone Neoplasms/drug therapy , Bone Neoplasms/secondary , Analgesics/pharmacology , Analgesics/therapeutic use , Male , Mice , Female , Mice, Inbred C57BL
2.
Nat Struct Mol Biol ; 29(7): 688-697, 2022 07.
Article in English | MEDLINE | ID: mdl-35817871

ABSTRACT

The technique of cryogenic-electron microscopy (cryo-EM) has revolutionized the field of membrane protein structure and function with a focus on the dominantly observed molecular species. This report describes the structural characterization of a fully active human apelin receptor (APJR) complexed with heterotrimeric G protein observed in both 2:1 and 1:1 stoichiometric ratios. We use cryo-EM single-particle analysis to determine the structural details of both species from the same sample preparation. Protein preparations, in the presence of the endogenous peptide ligand ELA or a synthetic small molecule, both demonstrate these mixed stoichiometric states. Structural differences in G protein engagement between dimeric and monomeric APJR suggest a role for the stoichiometry of G protein-coupled receptor- (GPCR-)G protein coupling on downstream signaling and receptor pharmacology. Furthermore, a small, hydrophobic dimer interface provides a starting framework for additional class A GPCR dimerization studies. Together, these findings uncover a mechanism of versatile regulation through oligomerization by which GPCRs can modulate their signaling.


Subject(s)
GTP-Binding Proteins , Receptors, G-Protein-Coupled , Apelin Receptors/chemistry , Apelin Receptors/metabolism , Carrier Proteins/metabolism , GTP-Binding Proteins/metabolism , Humans , Receptors, G-Protein-Coupled/chemistry , Signal Transduction
3.
Biomolecules ; 10(12)2020 12 03.
Article in English | MEDLINE | ID: mdl-33287369

ABSTRACT

Cysteinyl leukotriene G protein-coupled receptors, CysLT1R and CysLT2R, regulate bronchoconstrictive and pro-inflammatory effects and play a key role in allergic disorders, cardiovascular diseases, and cancer. CysLT1R antagonists have been widely used to treat asthma disorders, while CysLT2R is a potential target against uveal melanoma. However, very few selective antagonist chemotypes for CysLT receptors are available, and the design of such ligands has proved to be challenging. To overcome this obstacle, we took advantage of recently solved crystal structures of CysLT receptors and an ultra-large Enamine REAL library, representing a chemical space of 680 M readily available compounds. Virtual ligand screening employed 4D docking models comprising crystal structures of CysLT1R and CysLT2R and their corresponding ligand-optimized models. Functional assessment of the candidate hits yielded discovery of five novel antagonist chemotypes with sub-micromolar potencies and the best Ki = 220 nM at CysLT1R. One of the hits showed inverse agonism at the L129Q constitutively active mutant of CysLT2R, with potential utility against uveal melanoma.


Subject(s)
Drug Evaluation, Preclinical , Receptors, Leukotriene/metabolism , Small Molecule Libraries/pharmacology , Humans , Ligands , Molecular Docking Simulation , Protein Conformation , Receptors, Leukotriene/chemistry , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , User-Computer Interface
4.
Data Brief ; 31: 105884, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32637491

ABSTRACT

Neurotensin (NT) is a tridecapeptide displaying interesting antinociceptive properties through its action on its receptors, NTS1 and NTS2. Neurotensin-like compounds have been shown to exert better antinociceptive properties than morphine at equimolar doses. In this article, we characterized the molecular effects of a novel neurotensin (8-13) (NT(8-13)) analog containing an unnatural amino acid. This compound, named JMV2009, displays a Silaproline in position 10 in replacement of a proline in the native NT(8-13). We first examined the binding affinities of this novel NT(8-13) derivative at both NTS1 and NTS2 receptor sites by performing competitive displacement of iodinated NT on purified cell membranes. Then, we evaluated the ability of JMV2009 to activate NTS1-related G proteins as well as to promote the recruitment of ß-arrestins 1 and 2 by using BRET-based cellular assays in live cells. We next assessed its ability to induce p42/p44 MAPK phosphorylation and NT receptors internalization using western blot and cell-surface ELISA, respectively. Finally, we determined the in vitro plasma stability of this NT derivative. This article is associated with the original article "Pain relief devoid of opioid side effects following central action of a silylated neurotensin analog" published in European Journal of Pharmacology[1]. The reader is directed to the associated article for results interpretation, comments, and discussion.

5.
Eur J Pharmacol ; 882: 173174, 2020 Sep 05.
Article in English | MEDLINE | ID: mdl-32534076

ABSTRACT

Neurotensin (NT) exerts naloxone-insensitive antinociceptive action through its binding to both NTS1 and NTS2 receptors and NT analogs provide stronger pain relief than morphine on a molecular basis. Here, we examined the analgesic/adverse effect profile of a new NT(8-13) derivative denoted JMV2009, in which the Pro10 residue was substituted by a silicon-containing unnatural amino acid silaproline. We first report the synthesis and in vitro characterization (receptor-binding affinity, functional activity and stability) of JMV2009. We next examined its analgesic activity in a battery of acute, tonic and chronic pain models. We finally evaluated its ability to induce adverse effects associated with chronic opioid use, such as constipation and analgesic tolerance or related to NTS1 activation, like hypothermia. In in vitro assays, JMV2009 exhibited high binding affinity for both NTS1 and NTS2, improved proteolytic resistance as well as agonistic activities similar to NT, inducing sustained activation of p42/p44 MAPK and receptor internalization. Intrathecal injection of JMV2009 produced dose-dependent antinociceptive responses in the tail-flick test and almost completely abolished the nociceptive-related behaviors induced by chemical somatic and visceral noxious stimuli. Likewise, increasing doses of JMV2009 significantly reduced tactile allodynia and weight bearing deficits in nerve-injured rats. Importantly, repeated agonist treatment did not result in the development of analgesic tolerance. Furthermore, JMV2009 did not cause constipation and was ineffective in inducing hypothermia. These findings suggest that NT drugs can act as an effective opioid-free medication for the management of pain or can serve as adjuvant analgesics to reduce the opioid adverse effects.


Subject(s)
Analgesics/therapeutic use , Neurotensin/analogs & derivatives , Neurotensin/therapeutic use , Pain/drug therapy , Receptors, Neurotensin/agonists , Analgesics/pharmacology , Animals , Blood Pressure/drug effects , Body Temperature/drug effects , Gastrointestinal Motility/drug effects , Hyperalgesia/drug therapy , Hyperalgesia/physiopathology , Male , Neurotensin/pharmacology , Pain/physiopathology , Rats, Sprague-Dawley , Receptors, Neurotensin/physiology
6.
J Cell Physiol ; 235(12): 9676-9690, 2020 12.
Article in English | MEDLINE | ID: mdl-32420639

ABSTRACT

Cell migration is a ubiquitous process necessary to maintain and restore tissue functions. However, in cancer, cell migration leads to metastasis development and thus worsens the prognosis. Although the mechanism of cell migration is well understood, the identification of new targets modulating cell migration and deciphering their signaling events could lead to new therapies to restore tissue functions in diseases, such as inflammatory bowel disease, or to block metastatic development in different forms of cancer. Previous research has identified the G-protein-coupled P2Y6 receptor as an innovative target that could dictate cell migration under normal and pathological conditions. Surprisingly, there is little information on the cellular events triggered by activated P2Y6 during cell migration. Here, we demonstrated that P2Y6 activation stimulated A549 human lung cancer cells and Caco-2 colorectal cancer cell migration. Activated P2Y6 increased the number of filopodia and focal adhesions; two migratory structures required for cell migration. The generation of these structures involved Gαq /calcium/protein kinases C (PKC) and Gα13 /RHO-associated protein kinase-dependent pathways that dictate the formation of the migratory structures. These pathways led to the stabilization of the actin cytoskeleton through a PKC-dependent phosphorylation of cofilin. These results support the idea that the P2Y6 receptor represents a target of interest to modulate cell migration and revealed an intricate dialogue between two Gα-protein signaling pathways.


Subject(s)
Cell Movement/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , Protein Kinase C-alpha/genetics , Receptors, Purinergic P2/genetics , A549 Cells , Actins/genetics , Caco-2 Cells , Calcium/metabolism , Cell Surface Extensions/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Epithelial Cells/metabolism , GTP-Binding Protein alpha Subunits, G12-G13/genetics , Gene Expression Regulation, Neoplastic , Humans , Receptors, G-Protein-Coupled/genetics , Signal Transduction/genetics , rho-Associated Kinases/genetics
7.
Pharmacol Res ; 155: 104750, 2020 05.
Article in English | MEDLINE | ID: mdl-32151680

ABSTRACT

Pepducins are cell-penetrating, membrane-tethered lipopeptides designed to target the intracellular region of a G protein-coupled receptor (GPCR) in order to allosterically modulate the receptor's signaling output. In this proof-of-concept study, we explored the pain-relief potential of a pepducin series derived from the first intracellular loop of neurotensin receptor type 1 (NTS1), a class A GPCR that mediates many of the effects of the neurotensin (NT) tridecapeptide, including hypothermia, hypotension and analgesia. We used BRET-based biosensors to determine the pepducins' ability to engage G protein signaling pathways associated with NTS1 activation. We observed partial Gαq and Gα13 activation at a 10 µM concentration, indicating that these pepducins may act as allosteric agonists of NTS1. Additionally, we used surface plasmon resonance (SPR) as a label-free assay to monitor pepducin-induced responses in CHO-K1 cells stably expressing hNTS1. This whole-cell integrated assay enabled us to subdivide our pepducin series into three profile response groups. In order to determine the pepducins' antinociceptive potential, we then screened the series in an acute pain model (tail-flick test) by measuring tail withdrawal latencies to a thermal nociceptive stimulus, following intrathecal (i.t.) pepducin administration (275 nmol/kg). We further evaluated promising pepducins in a tonic pain model (formalin test), as well as in neuropathic (Chronic Constriction Injury) and inflammatory (Complete Freund's Adjuvant) chronic pain models. We report one pepducin, PP-001, that consistently reduced rat nociceptive behaviors, even in chronic pain paradigms. Finally, we designed a TAMRA-tagged version of PP-001 and found by confocal microscopy that the pepducin reached the rat dorsal root ganglia post i.t. injection, thus potentially modulating the activity of NTS1 at this location to produce its analgesic effect. Altogether, these results suggest that NTS1-derived pepducins may represent a promising strategy in pain-relief.


Subject(s)
Analgesics/therapeutic use , Cell-Penetrating Peptides/therapeutic use , Lipopeptides/therapeutic use , Pain/drug therapy , Receptors, Neurotensin , Analgesics/pharmacology , Animals , CHO Cells , Cell-Penetrating Peptides/pharmacology , Cricetulus , GTP-Binding Proteins/metabolism , Ganglia, Spinal/metabolism , Lipopeptides/pharmacology , Male , Pain/genetics , Pain/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects
8.
Bio Protoc ; 10(16): e3715, 2020 Aug 20.
Article in English | MEDLINE | ID: mdl-33659379

ABSTRACT

Cell-based functional assays are an important part of compound screening and drug lead optimization, and they can also play a crucial role in the determination of the residues involved in ligand binding and signaling for a particular G-protein-coupled receptor. Conventional methods used for Gαq/15-coupled receptors rely on the use of fluorescent probes for Ca++ sensing (such as Fura-2 and Fluo-4) or on the incorporation of [3H]-inositol into inositol 1,4,5- triphosphate (IP3). However, these methods are not suitable for screening large libraries of compounds or for screening several mutants of the same receptor. In contrast, the IP-One assay by Cisbio is a TR-FRET assay suitable for large compound library screening when using stable cell lines that express a specific 7TMR. However, when using transiently transfected mutants of a 7TMR, this assay is not ideal, as it requires a two-step protocol of cell culture. Therefore, we have optimized the IP-One assay protocol using the reverse transfection method in 384-well plates. This offers a time- and resource-efficient alternative to the two-step protocol previously used for the screening of several mutants of Gαq/15-coupled 7TMRs.

9.
Nat Commun ; 10(1): 5573, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31811124

ABSTRACT

Cysteinyl leukotriene G protein-coupled receptors CysLT1 and CysLT2 regulate pro-inflammatory responses associated with allergic disorders. While selective inhibition of CysLT1R has been used for treating asthma and associated diseases for over two decades, CysLT2R has recently started to emerge as a potential drug target against atopic asthma, brain injury and central nervous system disorders, as well as several types of cancer. Here, we describe four crystal structures of CysLT2R in complex with three dual CysLT1R/CysLT2R antagonists. The reported structures together with the results of comprehensive mutagenesis and computer modeling studies shed light on molecular determinants of CysLTR ligand selectivity and specific effects of disease-related single nucleotide variants.


Subject(s)
Mutation , Receptors, Leukotriene/chemistry , Receptors, Leukotriene/genetics , Animals , Asthma/genetics , Asthma/metabolism , Computer Simulation , Crystallography, X-Ray , HEK293 Cells , Humans , Leukotriene D4/metabolism , Ligands , Models, Molecular , Molecular Docking Simulation , Mutagenesis , Protein Conformation , Protein Engineering , Receptors, Leukotriene/drug effects , Sf9 Cells
10.
Sci Adv ; 5(10): eaax2518, 2019 10.
Article in English | MEDLINE | ID: mdl-31633023

ABSTRACT

The G protein-coupled cysteinyl leukotriene receptor CysLT1R mediates inflammatory processes and plays a major role in numerous disorders, including asthma, allergic rhinitis, cardiovascular disease, and cancer. Selective CysLT1R antagonists are widely prescribed as antiasthmatic drugs; however, these drugs demonstrate low effectiveness in some patients and exhibit a variety of side effects. To gain deeper understanding into the functional mechanisms of CysLTRs, we determined the crystal structures of CysLT1R bound to two chemically distinct antagonists, zafirlukast and pranlukast. The structures reveal unique ligand-binding modes and signaling mechanisms, including lateral ligand access to the orthosteric pocket between transmembrane helices TM4 and TM5, an atypical pattern of microswitches, and a distinct four-residue-coordinated sodium site. These results provide important insights and structural templates for rational discovery of safer and more effective drugs.


Subject(s)
Anti-Asthmatic Agents/metabolism , Receptors, Leukotriene/metabolism , Anti-Asthmatic Agents/chemistry , Binding Sites , Chromones/chemistry , Chromones/metabolism , Crystallography, X-Ray , Humans , Indoles , Leukotriene Antagonists/chemistry , Leukotriene Antagonists/metabolism , Ligands , Molecular Docking Simulation , Phenylcarbamates , Protein Structure, Tertiary , Receptors, Leukotriene/chemistry , Receptors, Leukotriene/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Sodium/chemistry , Sodium/metabolism , Sulfonamides , Tosyl Compounds/chemistry , Tosyl Compounds/metabolism
11.
J Med Chem ; 61(16): 7103-7115, 2018 08 23.
Article in English | MEDLINE | ID: mdl-30035538

ABSTRACT

The neurotensin receptors are attractive targets for the development of new analgesic compounds. They represent potential alternatives or adjuvants to opioids. Herein, we report the structural optimization of our recently reported macrocyclic peptide analogues of NT(8-13). The macrocycle was formed via ring-closing metathesis (RCM) between an ortho allylated tyrosine residue in position 11 and the side chain of alkene-functionalized amino acid in position 8 of NT(8-13). Minute modifications led to significant binding affinity improvement ( Ki improved from 5600 to 15 nM) with greatly improved plasma stability compared to NT(8-13). This study also delineates the structural features influencing these parameters. The signaling profiles of the new macrocycles were determined on the NTS1 receptor, and the physiological effects of the two most potent and stable analogues were assessed in vivo using rodent models. Both compounds displayed strong analgesic effects.


Subject(s)
Analgesics, Non-Narcotic/chemistry , Analgesics, Non-Narcotic/pharmacology , Neurotensin/pharmacology , Peptide Fragments/pharmacology , Peptides, Cyclic/chemistry , Receptors, Neurotensin/metabolism , Animals , Binding, Competitive , Blood Pressure/drug effects , Body Temperature/drug effects , CHO Cells , Cricetulus , Cyclization , Drug Evaluation, Preclinical/methods , Drug Stability , Male , Molecular Docking Simulation , Neurotensin/agonists , Neurotensin/chemistry , Peptide Fragments/agonists , Peptide Fragments/chemistry , Peptides, Cyclic/blood , Peptides, Cyclic/pharmacology , Rats, Sprague-Dawley , Receptors, Neurotensin/chemistry , Structure-Activity Relationship , Tyrosine/chemistry
12.
ACS Med Chem Lett ; 9(3): 227-232, 2018 Mar 08.
Article in English | MEDLINE | ID: mdl-29541365

ABSTRACT

Neurotensin exerts potent analgesic effects following activation of its cognate GPCRs. In this study, we describe a systematic exploration, using structure-based design, of conformationally constraining neurotensin (8-13) with the help of macrocyclization and the resulting impacts on binding affinity, signaling, and proteolytic stability. This exploratory study led to a macrocyclic scaffold with submicromolar binding affinity, agonist activity, and greatly improved plasma stability.

13.
Eur J Pharmacol ; 805: 1-13, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28341345

ABSTRACT

The human neurotensin 1 receptor (hNTS1) is a G protein-coupled receptor involved in many physiological functions, including analgesia, hypothermia, and hypotension. To gain a better understanding of which signaling pathways or combination of pathways are linked to NTS1 activation and function, we investigated the ability of activated hNTS1, which was stably expressed by CHO-K1 cells, to directly engage G proteins, activate second messenger cascades and recruit ß-arrestins. Using BRET-based biosensors, we found that neurotensin (NT), NT(8-13) and neuromedin N (NN) activated the Gαq-, Gαi1-, GαoA-, and Gα13-protein signaling pathways as well as the recruitment of ß-arrestins 1 and 2. Using pharmacological inhibitors, we further demonstrated that all three ligands stimulated the production of inositol phosphate and modulation of cAMP accumulation along with ERK1/2 activation. Interestingly, despite the functional coupling to Gαi1 and GαoA, NT was found to produce higher levels of cAMP in the presence of pertussis toxin, supporting that hNTS1 activation leads to cAMP accumulation in a Gαs-dependent manner. Additionally, we demonstrated that the full activation of ERK1/2 required signaling through both a PTX-sensitive Gi/o-c-Src signaling pathway and PLCß-DAG-PKC-Raf-1-dependent pathway downstream of Gq. Finally, the whole-cell integrated signatures monitored by the cell-based surface plasmon resonance and changes in the electrical impedance of a confluent cell monolayer led to identical phenotypic responses between the three ligands. The characterization of the hNTS1-mediated cellular signaling network will be helpful to accelerate the validation of potential NTS1 biased ligands with an improved therapeutic/adverse effect profile.


Subject(s)
Receptors, Neurotensin/metabolism , Signal Transduction , Amino Acid Sequence , Animals , CHO Cells , Cricetinae , Cricetulus , Enzyme Activation , GTP-Binding Proteins/metabolism , Humans , Ligands , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Neurotensin/chemistry , Neurotensin/metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , beta-Arrestin 1/metabolism , beta-Arrestin 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...