Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Syst Neurosci ; 12: 40, 2018.
Article in English | MEDLINE | ID: mdl-30245617

ABSTRACT

Recent studies suggest that sleep differentially alters the activity of cortical neurons based on firing rates during preceding wake-increasing the firing rates of sparsely firing neurons and decreasing those of faster firing neurons. Because sparsely firing cortical neurons may play a specialized role in sensory processing, sleep could facilitate sensory function via selective actions on sparsely firing neurons. To test this hypothesis, we analyzed longitudinal electrophysiological recordings of primary visual cortex (V1) neurons across a novel visual experience which induces V1 plasticity (or a control experience which does not), and a period of subsequent ad lib sleep or partial sleep deprivation. We find that across a day of ad lib sleep, spontaneous and visually-evoked firing rates are selectively augmented in sparsely firing V1 neurons. These sparsely firing neurons are more highly visually responsive, and show greater orientation selectivity than their high firing rate neighbors. They also tend to be "soloists" instead of "choristers"-showing relatively weak coupling of firing to V1 population activity. These population-specific changes in firing rate are blocked by sleep disruption either early or late in the day, and appear to be brought about by increases in neuronal firing rates across bouts of rapid eye movement (REM) sleep. Following a patterned visual experience that induces orientation-selective response potentiation (OSRP) in V1, sparsely firing and weakly population-coupled neurons show the highest level of sleep-dependent response plasticity. Across a day of ad lib sleep, population coupling strength increases selectively for sparsely firing neurons-this effect is also disrupted by sleep deprivation. Together, these data suggest that sleep may optimize sensory function by augmenting the functional connectivity and firing rate of highly responsive and stimulus-selective cortical neurons, while simultaneously reducing noise in the network by decreasing the activity of less selective, faster-firing neurons.

2.
Cereb Cortex ; 28(10): 3711-3723, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30060138

ABSTRACT

Oscillations in the hippocampal network during sleep are proposed to play a role in memory storage by patterning neuronal ensemble activity. Here we show that following single-trial fear learning, sleep deprivation (which impairs memory consolidation) disrupts coherent firing rhythms in hippocampal area CA1. State-targeted optogenetic inhibition of CA1 parvalbumin-expressing (PV+) interneurons during postlearning NREM sleep, but not REM sleep or wake, disrupts contextual fear memory (CFM) consolidation in a manner similar to sleep deprivation. NREM-targeted inhibition disrupts CA1 network oscillations which predict successful memory storage. Rhythmic optogenetic activation of PV+ interneurons following learning generates CA1 oscillations with coherent principal neuron firing. This patterning of CA1 activity rescues CFM consolidation in sleep-deprived mice. Critically, behavioral and optogenetic manipulations that disrupt CFM also disrupt learning-induced stabilization of CA1 ensembles' communication patterns in the hours following learning. Conversely, manipulations that promote CFM also promote long-term stability of CA1 communication patterns. We conclude that sleep promotes memory consolidation by generating coherent rhythms of CA1 network activity, which provide consistent communication patterns within neuronal ensembles. Most importantly, we show that this rhythmic patterning of activity is sufficient to promote long-term memory storage in the absence of sleep.


Subject(s)
Hippocampus/physiopathology , Memory Consolidation , Nerve Net/physiopathology , Sleep Deprivation/physiopathology , Sleep Deprivation/psychology , Animals , CA1 Region, Hippocampal/physiopathology , Fear/psychology , Interneurons , Learning , Mice , Mice, Inbred C57BL , Optogenetics , Parvalbumins/metabolism , Sleep, Slow-Wave
3.
Proc Natl Acad Sci U S A ; 114(39): 10485-10490, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28893999

ABSTRACT

Two long-standing questions in neuroscience are how sleep promotes brain plasticity and why some forms of plasticity occur preferentially during sleep vs. wake. Establishing causal relationships between specific features of sleep (e.g., network oscillations) and sleep-dependent plasticity has been difficult. Here we demonstrate that presentation of a novel visual stimulus (a single oriented grating) causes immediate, instructive changes in the firing of mouse lateral geniculate nucleus (LGN) neurons, leading to increased firing-rate responses to the presented stimulus orientation (relative to other orientations). However, stimulus presentation alone does not affect primary visual cortex (V1) neurons, which show response changes only after a period of subsequent sleep. During poststimulus nonrapid eye movement (NREM) sleep, LGN neuron overall spike-field coherence (SFC) with V1 delta (0.5-4 Hz) and spindle (7-15 Hz) oscillations increased, with neurons most responsive to the presented stimulus showing greater SFC. To test whether coherent communication between LGN and V1 was essential for cortical plasticity, we first tested the role of layer 6 corticothalamic (CT) V1 neurons in coherent firing within the LGN-V1 network. We found that rhythmic optogenetic activation of CT V1 neurons dramatically induced coherent firing in LGN neurons and, to a lesser extent, in V1 neurons in the other cortical layers. Optogenetic interference with CT feedback to LGN during poststimulus NREM sleep (but not REM or wake) disrupts coherence between LGN and V1 and also blocks sleep-dependent response changes in V1. We conclude that NREM oscillations relay information regarding prior sensory experience between the thalamus and cortex to promote cortical plasticity.


Subject(s)
Geniculate Bodies/physiology , Neuronal Plasticity/physiology , Neurons/physiology , Photic Stimulation/methods , Sleep/physiology , Thalamus/physiology , Visual Cortex/physiology , Animals , Eye Movements/physiology , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Renshaw Cells/physiology , Thalamus/cytology
4.
Sleep ; 37(7): 1163-70, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-25061244

ABSTRACT

STUDY OBJECTIVES: Sleep has been hypothesized to globally reduce synaptic strength. However, recent findings suggest that in the context of learning and memory consolidation, sleep may promote synaptic potentiation. We tested the requirement for sleep in a naturally occurring form of experience-dependent synaptic potentiation in the adult mouse visual cortex (V1), which is initiated by patterned visual experience. DESIGN: Visual responses were recorded in individual V1 neurons before and after presentation of an oriented grating stimulus, and after subsequent sleep or sleep deprivation. MEASUREMENTS AND RESULTS: We find that V1 response potentiation-associated with a shift in orientation preference in favor of the presented stimulus-occurs only after sleep and only during the entrained circadian sleep phase, and is blocked by sleep deprivation. Induction of plasticity following stimulus presentation is associated with an increase in principal neuron firing in V1, which is present in all behavioral states and occurs regardless of time of day. Sleep dependent potentiation is proportional to phase-locking of neuronal activity with thalamocortical spindle oscillations. CONCLUSIONS: Our results suggest that sleep can promote cortical synaptic potentiation in vivo, and that this potentiation may be mediated by slow wave sleep spindles. CITATION: Aton SJ, Suresh A, Broussard C, Frank MG. Sleep promotes cortical response potentiation following visual experience.


Subject(s)
Long-Term Potentiation/physiology , Sleep/physiology , Visual Cortex/physiology , Animals , Learning/physiology , Male , Mice , Neurons/physiology , Photic Stimulation , Sleep Deprivation/physiopathology
5.
Proc Natl Acad Sci U S A ; 110(8): 3101-6, 2013 Feb 19.
Article in English | MEDLINE | ID: mdl-23300282

ABSTRACT

Ocular dominance plasticity in the developing primary visual cortex is initiated by monocular deprivation (MD) and consolidated during subsequent sleep. To clarify how visual experience and sleep affect neuronal activity and plasticity, we continuously recorded extragranular visual cortex fast-spiking (FS) interneurons and putative principal (i.e., excitatory) neurons in freely behaving cats across periods of waking MD and post-MD sleep. Consistent with previous reports in mice, MD induces two related changes in FS interneurons: a response shift in favor of the closed eye and depression of firing. Spike-timing-dependent depression of open-eye-biased principal neuron inputs to FS interneurons may mediate these effects. During post-MD nonrapid eye movement sleep, principal neuron firing increases and becomes more phase-locked to slow wave and spindle oscillations. Ocular dominance (OD) shifts in favor of open-eye stimulation--evident only after post-MD sleep--are proportional to MD-induced changes in FS interneuron activity and to subsequent sleep-associated changes in principal neuron activity. OD shifts are greatest in principal neurons that fire 40-300 ms after neighboring FS interneurons during post-MD slow waves. Based on these data, we propose that MD-induced changes in FS interneurons play an instructive role in ocular dominance plasticity, causing disinhibition among open-eye-biased principal neurons, which drive plasticity throughout the visual cortex during subsequent sleep.


Subject(s)
Cerebral Cortex/cytology , Neuronal Plasticity , Neurons/physiology , Sleep , Vision, Ocular , Action Potentials , Animals , Cats , Wakefulness
SELECTION OF CITATIONS
SEARCH DETAIL
...