Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anim Behav ; 104: 203-212, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25983335

ABSTRACT

In natural populations, genetic variation in seasonal male sexual behaviour could affect behavioural ecology and evolution. In a wild-source population of white-footed mice, Peromyscus leucopus, from Virginia, U.S.A., males experiencing short photoperiod show high levels of genetic variation in reproductive organ mass and neuroendocrine traits related to fertility. We tested whether males from two divergent selection lines, one that strongly suppresses fertility under short photoperiod (responder) and one that weakly suppresses fertility under short photoperiod (nonresponder), also differ in photoperiod-dependent sexual behaviour and responses to female olfactory cues. Under short, but not long, photoperiod, there were significant differences between responder and nonresponder males in sexual behaviour and likelihood of inseminating a female. Males that were severely oligospermic or azoospermic under short photoperiod failed to display sexual behaviour in response to an ovariectomized and hormonally primed receptive female. However, on the day following testing, females were positive for spermatozoa only when paired with a male having a sperm count in the normal range for males under long photoperiod. Males from the nonresponder line showed accelerated reproductive development under short photoperiod in response to urine-soiled bedding from females, but males from the responder line did not. The results indicate genetic variation in sexual behaviour that is expressed under short, but not long, photoperiod, and indicate a potential link between heritable neuroendocrine variation and male sexual behaviour. In winter in a natural population, this heritable behavioural variation could affect fitness, seasonal life history trade-offs and population growth.

2.
Physiol Biochem Zool ; 80(5): 534-41, 2007.
Article in English | MEDLINE | ID: mdl-17717816

ABSTRACT

The evolution of mammalian brain function depends in part on levels of natural, heritable variation in numbers, location, and function of neurons. However, the nature and amount of natural genetic variation in neural traits and their physiological link to variation in function or evolutionary change are unknown. We estimated the level of within-population heritable variation in the number of gonadotropin-releasing hormone (GnRH) neurons, which play a major role in reproductive regulation, in an unselected outbred population recently derived (<10 generations) from a single natural population of white-footed mice (Peromyscus leucopus, Rafinesque). Young adult male mice exhibited an approximately threefold variation in the number of neurons immunoreactive for GnRH in the brain areas surveyed, as detected using SMI-41 antibody with a single-label avidin-biotin complex method. Consistent with earlier findings of selectable variation in GnRH neurons in this population, the level of genetic variation in this neuronal trait within this single population was high, with broadsense heritability using full-sib analysis estimated at 0.72 (P<0.05). Either weak selection on this trait or environmental variation that results in inconsistent selection on this trait might allow a high level of variation in this population.


Subject(s)
Brain/physiology , Gonadotropin-Releasing Hormone/genetics , Neurons/physiology , Peromyscus/genetics , Animals , Body Weight/physiology , Cell Count , Female , Genetic Variation , Gonadotropin-Releasing Hormone/physiology , Immunohistochemistry , Male , Organ Size/physiology , Peromyscus/physiology , Testis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...