Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Front Public Health ; 11: 1147204, 2023.
Article in English | MEDLINE | ID: mdl-37213624

ABSTRACT

Nail technicians are exposed to volatile organic compounds (VOCs) emitted from nail products used in their daily work, which may cause adverse health effects. This study aimed to assess VOC exposure of nail technicians in the South African formal and informal sectors and to provide a task-based exposure assessment of different nail applications. Personal passive sampling was conducted on 10 formal and 10 informal nail technicians located in the northern suburbs of Johannesburg and the Braamfontein area, over 3 days. Real-time measurements were taken to determine task-based peak exposures. The number of clients serviced, working hours, type of nail application, type of ventilation, room volume, and carbon dioxide (CO2) concentrations, were also recorded. There were differences in the nail products used, the types of nail applications performed, the number of clients serviced, and breathing zones VOC concentrations of the formal and informal nail technicians. Some formal nail salons were equipped with mechanical ventilation while the informal nail salons relied on natural ventilation. CO2 concentrations were higher in the informal than the formal nail salons and increased during the course of the working day. Formal nail technicians were exposed to higher total volatile organic compounds (TVOC) concentrations than informal nail technicians, which may be due to the different nail application procedures as well as 'background' emissions from their co-workers-the bystander effect. Acetone was the predominantly detected VOC: the formal nail technicians were exposed to significantly higher TWA (8 h) concentrations [geometric mean (GM) 43.8 ppm, geometric standard deviation (GSD) 2.49] than were the informal nail technicians (GM 9.87 ppm, GSD 5.13). Methyl methacrylate among the informal nail technicians was measured at 89.7% detection frequency, far higher than that among the formal nail technicians (3.4%). This may be attributed to the observed popularity of acrylic nail applications in this sector. Nail applications involving soak-off gave rise to high TVOC peaks at the start of the nail application process. This is the first study to compare organic solvent exposures among formal and informal nail technicians and determine task-based peak exposures. It also brings attention to the often-overlooked informal sector of this industry.


Subject(s)
Occupational Exposure , Volatile Organic Compounds , Humans , Occupational Exposure/analysis , Carbon Dioxide , South Africa , Solvents
2.
Article in English | MEDLINE | ID: mdl-37107741

ABSTRACT

Participatory research, including self-assessment of exposure (SAE), can engage study participants and reduce costs. The objective of this study was to investigate the feasibility and reliability of a SAE regime among nail technicians. The study was nested in a larger study, which included exposure assessment supervised by experts, i.e., controlled assessment of exposure (CAE). In the SAE approach, ten formal and ten informal nail technicians were verbally instructed to use a passive sampler and complete an activity sheet. Each participant conducted measurements on three consecutive days, whereafter the expert collected the passive samplers. Sixty samples were, thus, analyzed for twenty-one volatile organic compounds (VOCs). The reported concentrations of 11 VOCs were converted into total VOC (TVOC) concentrations, adjusted for their respective emission rates (adj TVOC) to allow comparison within and between nail technician categories (formal vs informal), as well as assessment regimes (SAE versus CAE), using the data from the main study. In total, 57 SAE and 58 CAE results were compared, using a linear mixed-effects model. There were variations in individual VOC concentrations, especially for the informal sector participants. The major contributors to the adj TVOC concentrations were acetone and 2-propanol for the formal category, whereas ethyl- and methyl methacrylate contributed most to the informal nail technicians' total exposures. No significant differences in adj TVOC-concentrations were observed between the assessment regimes, but significantly higher exposures were recorded in the formal technicians. The results show that the SAE approach is feasible in the informal service sector and can extend an exposure dataset to enable reliable estimates for scenarios with substantial exposure variations.


Subject(s)
Air Pollutants , Occupational Exposure , Volatile Organic Compounds , Humans , Occupational Exposure/analysis , Solvents , Volatile Organic Compounds/analysis , Self-Assessment , South Africa , Reproducibility of Results , Environmental Monitoring/methods , Air Pollutants/analysis
3.
Article in English | MEDLINE | ID: mdl-36767865

ABSTRACT

Occupational exposure assessment is important in preventing occupational coal worker's diseases. Methods have been proposed to assess compliance with exposure limits which aim to protect workers from developing diseases. A Bayesian framework with informative prior distribution obtained from historical or expert judgements has been highly recommended for compliance testing. The compliance testing is assessed against the occupational exposure limits (OEL) and categorization of the exposure, ranging from very highly controlled to very poorly controlled exposure groups. This study used a Bayesian framework from historical and expert elicitation data to compare the posterior probabilities of the 95th percentile (P95) of the coal dust exposures to improve compliance assessment and decision-making. A total of 10 job titles were included in this study. Bayesian framework with Markov chain Monte Carlo (MCMC) simulation was used to draw a full posterior probability of finding a job title to an exposure category. A modified IDEA ("Investigate", "Discuss", "Estimate", and "Aggregate") technique was used to conduct expert elicitation. The experts were asked to give their subjective probabilities of finding coal dust exposure of a job title in each of the exposure categories. Sensitivity analysis was done for parameter space to check for misclassification of exposures. There were more than 98% probabilities of the P95 exposure being found in the poorly controlled exposure group when using expert judgments. Historical data and non-informative prior tend to show a lower probability of finding the P95 in higher exposure categories in some titles unlike expert judgments. Expert judgements tend to show some similarity in findings with historical data. We recommend the use of expert judgements in occupational risk assessment as prior information before a decision is made on current exposure when historical data are unavailable or scarce.


Subject(s)
Coal Mining , Occupational Diseases , Occupational Exposure , Humans , Bayes Theorem , Coal , South Africa , Dust/analysis
4.
Article in English | MEDLINE | ID: mdl-35457309

ABSTRACT

Bayesian hierarchical framework for exposure data compliance testing is highly recommended in occupational hygiene. However, it has not been used for coal dust exposure compliance testing in South Africa (SA). The Bayesian analysis incorporates prior information, which increases solid decision making regarding risk management. This study compared the posterior 95th percentile (P95) of the Bayesian non-informative and informative prior from historical data relative to the occupational exposure limit (OEL) and exposure categories, and the South African Mining Industry Code of Practice (SAMI CoP) approach. A total of nine homogenous exposure groups (HEGs) with a combined 243 coal mine workers' coal dust exposure data were included in this study. Bayesian framework with Markov chain Monte Carlo (MCMC) simulation to draw a full P95 posterior distribution relative to the OEL was used to investigate compliance. We obtained prior information from historical data and employed non-informative prior distribution to generate the posterior findings. The findings were compared to the SAMI CoP. The SAMI CoP 90th percentile (P90) indicated that one HEG was compliant (below the OEL), while none of the HEGs in the Bayesian methods were compliant. The analysis using non-informative prior indicated a higher variability of exposure than the informative prior according to the posterior GSD. The median P95 from the non-informative prior were slightly lower with wider 95% credible intervals (CrI) than the informative prior. All the HEGs in both Bayesian approaches were in exposure category four (poorly controlled), with the posterior probabilities slightly lower in the non-informative uniform prior distribution. All the methods mainly indicated non-compliance from the HEGs. The non-informative prior, however, showed a possible potential of allocating HEGs to a lower exposure category, but with high uncertainty compared to the informative prior distribution from historical data. Bayesian statistics with informative prior derived from historical data should be highly encouraged in coal dust overexposure assessments in South Africa for correct decision making.


Subject(s)
Coal Mining , Occupational Exposure , Bayes Theorem , Coal , Dust/analysis , Humans , South Africa
5.
Article in English | MEDLINE | ID: mdl-35270373

ABSTRACT

Occupational chrysotile asbestos exposure data in Zimbabwe is limited. The aim of this study was therefore to develop a job exposure matrix (JEM) specific to the chrysotile asbestos cement manufacturing industry using the available personal exposure concentration data. Quantitative personal exposure chrysotile fibre concentration data collected by the two factories from 1996 to 2020 were used to construct the JEM. Exposure groups from which data was extracted were classified based on the Zimbabwe Standard Classification of Occupations (ZSCO), 2009-2019. Analysis of amphiboles in raw chrysotile was done by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Descriptive statistics, namely mean, standard deviation and range were computed for the main variable, job/occupation. All jobs/occupations in both factories had annual mean personal exposure concentrations exceeding the OEL of 0.1 f/mL, except for the period from 2009 to 2016 in the Harare factory and the period from 2009 to 2020 in the Bulawayo factory. Despite the Harare factory having no AC manufacturing activity since 2017, personal exposure concentrations showed elevated levels for the period 2018-2020. Amphiboles were detected in almost all bulk samples of chrysotile asbestos analysed. The established JEM, which has been generated from actual local quantitative exposure measurements, can be used in evaluating historical exposure to chrysotile asbestos fibre, to better understand and predict occurrence of ARDs in future.


Subject(s)
Asbestos , Lung Neoplasms , Occupational Exposure , Asbestos/analysis , Asbestos, Amphibole , Asbestos, Serpentine , Humans , Occupational Exposure/analysis , Zimbabwe
6.
Article in English | MEDLINE | ID: mdl-36612385

ABSTRACT

The use of historical asbestos measurement data in occupational exposure assessment is essential as it allows more quantitative analysis of possible exposure response relationships in asbestos-related disease (ARD) occurrence. The aim of this study was to predict possible ARDs, namely lung cancer, mesothelioma, gastrointestinal cancer, and asbestosis, in two chrysotile asbestos cement (AC) manufacturing factories. Prediction of ARDs was done using a specific designed job-exposure matrix for airborne chrysotile asbestos fibre concentrations obtained from the Harare and Bulawayo AC factories and through application of OSHA's linear dose effect model in which ARDs were estimated through extrapolation at 1, 10, 20, and 25 years of exposure. The results show that more cancer and asbestosis cases are likely to be experienced among those exposed before 2008 as exposure levels and subsequently cumulative exposure were generally much higher than those experienced after 2008. After a possible exposure period of 25 years, overall cancer cases predicted in the Harare factory were 325 cases per 100,000 workers, while for the Bulawayo factory, 347 cancer cases per 100,000 workers exposed may be experienced. Possible high numbers of ARDs are likely to be associated with specific tasks/job titles, e.g., saw cutting, kollergang, fettling table, ground hard waste, and possibly pipe-making operations, as cumulative exposures, though lower than reported in other studies, may present higher risk of health impairment. The study gives insights into possible ARDs, namely lung cancer, mesothelioma, gastrointestinal cancer, and asbestosis, that may be anticipated at various cumulative exposures over 1, 10, 20, and 25 years of exposure in AC manufacturing factories in Zimbabwe. Additionally, results from the study can also form a basis for more in-depth assessment of asbestos cancer morbidity studies in the AC manufacturing industries.


Subject(s)
Asbestos , Asbestosis , Lung Neoplasms , Mesothelioma, Malignant , Mesothelioma , Occupational Exposure , Humans , Asbestos, Serpentine/toxicity , Asbestosis/epidemiology , Zimbabwe/epidemiology , Mesothelioma/epidemiology , Lung Neoplasms/epidemiology
7.
Article in English | MEDLINE | ID: mdl-34682496

ABSTRACT

Zimbabwe has two major factories that have been manufacturing chrysotile asbestos cement products since the 1940s. Exposure monitoring of airborne fibres has been ongoing since the early 1990s. This study examines trends in personal exposure chrysotile asbestos fibre concentrations for the period 1996-2016. Close to 3000 historical personal exposure measurements extracted from paper records in the two factories were analysed for trends in exposure. Exposure over time was characterised according to three time periods and calendar years. Mean personal exposure chrysotile asbestos fibre concentrations generally showed a downward trend over the years in both factories. Exposure data showed that over the observed period 57% and 50% of mean personal exposure chrysotile asbestos fibre concentrations in the Harare and Bulawayo factories, respectively, were above the OEL, with overexposure being exhibited before 2008. Overall, personal exposure asbestos fibre concentrations in the factories dropped from 0.15 f/mL in 1996 to 0.05-0.06 f/mL in 2016-a decrease of 60-67%. These results can be used in future epidemiological studies, and in predicting the occurrence of asbestos-related diseases in Zimbabwe.


Subject(s)
Asbestos , Occupational Exposure , Asbestos, Serpentine , Construction Materials , Manufacturing and Industrial Facilities , Occupational Exposure/analysis , Zimbabwe
8.
Ann Work Expo Health ; 65(8): 955-965, 2021 10 09.
Article in English | MEDLINE | ID: mdl-34089331

ABSTRACT

OBJECTIVES: Globally, several strategies for compliance testing and within-group exposure variability have been suggested. This study aimed to evaluate the performance of the South African Mining Industry Code of Practice (SAMI CoP) approach for grouping and compliance testing against international standards. METHODS: A total of 28 homogenous exposure groups (HEGs) with 728 underground coal mine workers' eight-hour time-weighted average coal dust concentration data were obtained. Compliance testing was assessed using 10% exceedance above occupational exposure limit (OEL) for SAMI CoP, and the 95th percentile of the lognormal distribution was computed for the European Standardization Committee (CEN) and American Industrial Hygiene Association (AIHA). Comparison of the homogeneity of the HEGs was done between SAMI CoP which mandates that both the arithmetic mean (AM) and 90th percentile must fall in the same exposure band to certify homogeneity and the global geometric standard deviation (GSD) and Rappaport ratio (R-ratio) with specific acceptability criteria. To test the homogeneity of exposure within job titles, eight non-homogenous HEGs that have two or more job titles with three measurements were investigated using GSD and the SAMI CoP criteria. RESULTS: A total of 21 HEGs out of 28 were non-compliant to the OEL across SAMI CoP, CEN, and AIHA criteria. Compliance to the OEL was observed for seven HEGs according to the SAMI CoP approach, whereas only one HEG was compliant according to both the SAMI CoP and CEN approaches. The GSD criterion and SAMI CoP revealed that 11 and 6 HEGs were homogenous, respectively, and only on 4 occasions, the 2 approaches agreed. The job titles of the majority of non-homogenous HEGs in both SAMI CoP and GSD were actually homogenous. Five out of 10 sub-groups have their AM above that of HEG B. Other HEGs had at least one of their AM and 90th percentile values above that of their respective parent HEGs. CONCLUSIONS: All three approaches mainly confirmed non-compliance of HEGs. SAMI CoP tended to show compliance of HEGs more than CEN. Non-homogenous HEGs had many job titles that were homogenous according to both SAMI CoP and GSD criteria. There was no perfect agreement of homogeneity by all the indicators. For both future constitutions of HEGs as well as a retrospective assessment of high exposure groups, homogeneity can be improved by using job titles.


Subject(s)
Coal Mining , Occupational Exposure , Coal , Dust/analysis , Humans , Industry , Retrospective Studies
9.
Front Public Health ; 8: 107, 2020.
Article in English | MEDLINE | ID: mdl-32318535

ABSTRACT

Silicosis and other respirable crystalline silica-associated diseases, most notably tuberculosis, have long been substantial causes of morbidity and mortality in South Africa. For the mining and non-mining industries, silicosis elimination programmes have been developed with milestones regarding reduction of levels of exposure to respirable crystalline silica (RCS) and targets regarding the date of eradication. The present paper explores the feasibility of achieving these targets by investigating the evidence that levels of exposure and silicosis incidence rates have declined by an appraisal of the methods for data collection and reporting. In the mining industry the silicosis elimination programme is supported by the development and advocacy of leading practices to reduce the exposure. RCS exposure data are routinely collected according to a Code of Practice (CoP) and the results are reported to the Mine Health and Safety Inspectorate. As the CoP and the actual workplace practices have been demonstrated to have some flaws, there is some concern about the accuracy of the actual exposure data and the data interpretation. The annually reported levels of exposure suggest a decline, however, the actual levels of RCS as well as the number of exposed workers, were not reported over the last few years. With regard to the silicosis incidence rates, a steady decline of new cases is reported. However, there is a risk of under-diagnosis and- reporting especially in former miners. In the non-mining industries, a systematic baseline of RCS exposure levels and silicosis incidence is lacking. The reporting by industries on assigning of the workforce to exposure categories seems to be fragmented and incomplete. Consequently, any evidence of progress toward achieving the silicosis elimination target cannot be documented. Both the silicosis elimination target and the exposure milestone are aspirational but are unlikely to be achieved. Nevertheless, the formal mining industry may get close. Exposure control interventions, especially in the non-mining industries, should be developed and implemented and pragmatic methods need to be put in place to identify sources of new silicosis cases for targeted intervention.


Subject(s)
Miners , Silicosis , Humans , Mining , Silicon Dioxide , Silicosis/epidemiology , South Africa/epidemiology
10.
Article in English | MEDLINE | ID: mdl-30602669

ABSTRACT

A D-grade type coal was burned under simulated domestic practices in a controlled laboratory set-up, in order to characterize the emissions of volatile organic compounds (VOCs); namely, benzene, toluene, ethylbenzene, and xylenes (BTEX). Near-field concentrations were collected in a shack-like structure constructed using corrugated iron, simulating a traditional house found in informal settlements in South Africa (SA). Measurements were carried out using the Synspec Spectras GC955 real-time monitor over a three-hour burn cycle. The 3-h average concentrations (in µg/m³) of benzene, toluene, ethylbenzene, p-xylene, and o-xylene were 919 ± 44, 2051 ± 91, 3838 ±19, 4245 ± 41 and 3576 ± 49, respectively. The cancer risk for adult males and females in a typical SA household exposure scenario was found to be 1.1 and 1.2 respectively, which are 110- and 120-fold higher than the U.S. Environmental Protection Agency (EPA) designated risk severity indicator (1 × 10-6). All four TEX (toluene, ethylbenzene, p-xylene and o-xylene) compounds recorded a Hazard Quotient (HQ) of less than 1, indicating a low risk of developing related non-carcinogenic health effects. The HQ for TEX ranged from 0.001 to 0.05, with toluene concentrations being the lowest, and ethylbenzene the highest. This study has demonstrated that domestic coal burning may be a significant source of BTEX emission exposure.


Subject(s)
Air Pollutants/analysis , Coal/analysis , Environmental Exposure/analysis , Volatile Organic Compounds/analysis , Adult , Benzene/analysis , Benzene Derivatives/analysis , Environmental Exposure/standards , Female , Humans , Male , Risk Assessment , South Africa , Toluene/analysis , Xylenes/analysis
11.
Risk Anal ; 37(7): 1358-1374, 2017 07.
Article in English | MEDLINE | ID: mdl-27664001

ABSTRACT

For safe innovation, knowledge on potential human health impacts is essential. Ideally, these impacts are considered within a larger life-cycle-based context to support sustainable development of new applications and products. A methodological framework that accounts for human health impacts caused by inhalation of engineered nanomaterials (ENMs) in an indoor air environment has been previously developed. The objectives of this study are as follows: (i) evaluate the feasibility of applying the CF framework for NP exposure in the workplace based on currently available data; and (ii) supplement any resulting knowledge gaps with methods and data from the life cycle approach and human risk assessment (LICARA) project to develop a modified case-specific version of the framework that will enable near-term inclusion of NP human health impacts in life cycle assessment (LCA) using a case study involving nanoscale titanium dioxide (nanoTiO2 ). The intent is to enhance typical LCA with elements of regulatory risk assessment, including its more detailed measure of uncertainty. The proof-of-principle demonstration of the framework highlighted the lack of available data for both the workplace emissions and human health effects of ENMs that is needed to calculate generalizable characterization factors using common human health impact assessment practices in LCA. The alternative approach of using intake fractions derived from workplace air concentration measurements and effect factors based on best-available toxicity data supported the current case-by-case approach for assessing the human health life cycle impacts of ENMs. Ultimately, the proposed framework and calculations demonstrate the potential utility of integrating elements of risk assessment with LCA for ENMs once the data are available.

12.
Ann Occup Hyg ; 60(8): 949-59, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27439334

ABSTRACT

Tiered or stepwise approaches to assess occupational exposure to nano-objects, and their agglomerates and aggregates have been proposed, which require decision rules (DRs) to move to a next tier, or terminate the assessment. In a desk study the performance of a number of DRs based on the evaluation of results from direct reading instruments was investigated by both statistical simulations and the application of the DRs to real workplace data sets. A statistical model that accounts for autocorrelation patterns in time-series, i.e. autoregressive integrated moving average (ARIMA), was used as 'gold' standard. The simulations showed that none of the proposed DRs covered the entire range of simulated scenarios with respect to the ARIMA model parameters, however, a combined DR showed a slightly better agreement. Application of the DRs to real workplace datasets (n = 117) revealed sensitivity up to 0.72, whereas the lowest observed specificity was 0.95. The selection of the most appropriate DR is very much dependent on the consequences of the decision, i.e. ruling in or ruling out of scenarios for further evaluation. Since a basic assessment may also comprise of other type of measurements and information, an evaluation logic was proposed which embeds the DRs, but furthermore supports decision making in view of a tiered-approach exposure assessment.


Subject(s)
Air Pollutants, Occupational/analysis , Decision Support Techniques , Inhalation Exposure/analysis , Nanostructures/analysis , Occupational Exposure/analysis , Environmental Monitoring/methods , Humans , Workplace
13.
Ann Occup Hyg ; 60(8): 916-35, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27422281

ABSTRACT

BACKGROUND: Engineered nanomaterials (ENMs) have a large economic impact in a range of fields, but the concerns about health and safety of occupational activities involving nanomaterials have not yet been addressed. Monitoring exposure is an important step in risk management. Hence, the interest for reviewing studies that reported a potential for occupational exposure. METHODS: We systematically searched for studies published between January 2000 and January 2015. We included studies that used a comprehensive method of exposure assessment. Studies were grouped by nanomaterial and categorized as carbonaceous, metallic, or nanoclays. We summarized data on task, monitoring strategy, exposure outcomes, and controls in a narrative way. For each study, the strength of the exposure assessment was evaluated using predetermined criteria. Then, we identified all exposure situations that reported potential occupational exposure based on qualitative or quantitative outcomes. Results were synthesized and general conclusion statements on exposure situations were formulated. The quality of evidence for the conclusion statements was rated as low, moderate, or high depending on the number of confirmed exposure situations, the strength of the exposure assessment, and the consistency of the results. RESULTS: From the 6403 references initially identified, 220 were selected for full-text screening. From these, 50 studies describing 306 exposure situations in 72 workplaces were eligible for inclusion (27 industrial-scale plants and 45 research or pilot-scale units). There was a potential for exposure to ENMs in 233 of the exposure situations. Exposure occurred in 83% (N = 107) of the situations with carbonaceous ENMs, in 73% (N = 120) of those with metallic ENMs and in 100% (N = 6) of those with nanoclay. Concentrations of elemental carbon in the workers' breathing zone ranged from not detected (ND) to 910 µg m(-3) with local engineering controls (LEC), and from ND to 1000 µg m(-3) without those controls. For carbon nanofibres (CNFs), particle counts ranged from ND to 1.61 CNF structures cm(-3) with LEC, and from 0.09 to 193 CNF structures cm(-3) without those controls. The mass concentrations of aluminium oxide, titanium dioxide, silver, and iron nanoparticles (NPs) were ND, 10-150, 0.24-0.43, and 32 µg m(-3) with LEC, while they were <0.35, non-applicable, 0.09-33, and 335 µg m(-3) without those controls, respectively. CONCLUSIONS: Regarding the potential of exposure in the workplace, we found high-quality evidence for multiwalled carbon nanotubes (CNTs), single-walled CNTs, CNFs, aluminium oxide, titanium dioxide, and silver NPs; moderate-quality evidence for non-classified CNTs, nanoclays, and iron and silicon dioxide NPs; low-quality evidence for fullerene C60, double-walled CNTs, and zinc oxide NPs; and no evidence for cerium oxide NPs. We found high-quality evidence that potential exposure is most frequently due to handling tasks, that workers are mostly exposed to micro-sized agglomerated NPs, and that engineering controls considerably reduce workers' exposure. There was moderate-quality evidence that workers are exposed in secondary manufacturing industrial-scale plants. There was low-quality evidence that workers are exposed to airborne particles with a size <100nm. There were no studies conducted in low- and middle-income countries.


Subject(s)
Air Pollutants, Occupational/analysis , Nanotubes, Carbon/analysis , Occupational Exposure/adverse effects , Environmental Monitoring/methods , Humans , Inhalation Exposure/analysis , Particle Size , Risk Assessment
14.
Int J Hyg Environ Health ; 219(6): 503-12, 2016 08.
Article in English | MEDLINE | ID: mdl-27283207

ABSTRACT

Over the past decade, the primary focus of nanotoxicology and nanoenvironmental health and safety efforts has been largely on inhalation exposure to engineered nanomaterials, at the production stage, and much less on considering risks along the life cycle of nano-enabled products. Dermal exposure to nanomaterials and its health impact has been studied to a much lesser extent, and mostly in the context of intentional exposure to nano-enabled products such as in nanomedicine, cosmetics and personal care products. How concerning is dermal exposure to such nanoparticles in the context of occupational exposures? When and how should we measure it? In the first of a series of two papers (Larese Filon et al., 2016), we focused our attention on identifying conditions or situations, i.e. a combination of nanoparticle physico-chemical properties, skin barrier integrity, and occupations with high prevalence of skin disease, which deserve further investigation. This second paper focuses on the broad question of dermal exposure assessment to nanoparticles and attempts to give an overview of the mechanisms of occupational dermal exposure to nanoparticles and nano-enabled products and explores feasibility and adequacy of various methods of quantifying dermal exposure to NOAA. We provide here a conceptual framework for screening, prioritization, and assessment of dermal exposure to NOAA in occupational settings, and integrate it into a proposed framework for risk assessment.


Subject(s)
Environmental Monitoring/methods , Nanoparticles , Occupational Exposure , Skin Absorption , Animals , Dermatitis, Occupational/etiology , Eating , Humans , Nanoparticles/adverse effects , Nanoparticles/analysis , Occupational Exposure/adverse effects , Occupational Exposure/analysis
15.
Int J Hyg Environ Health ; 219(6): 536-44, 2016 08.
Article in English | MEDLINE | ID: mdl-27289581

ABSTRACT

The paper reviews and critically assesses the evidence on the relevance of various skin uptake pathways for engineered nanoparticles, nano-objects, their agglomerates and aggregates (NOAA). It focuses especially in occupational settings, in the context of nanotoxicology, risk assessment, occupational medicine, medical/epidemiological surveillance efforts, and the development of relevant exposure assessment strategies. Skin uptake of nanoparticles is presented in the context of local and systemic health effects, especially contact dermatitis, skin barrier integrity, physico-chemical properties of NOAA, and predisposing risk factors, such as stratum corneum disruption due to occupational co-exposure to chemicals, and the presence of occupational skin diseases. Attention should be given to: (1) Metal NOAA, since the potential release of ions may induce local skin effects (e.g. irritation and contact dermatitis) and absorption of toxic or sensitizing metals; (2) NOAA with metal catalytic residue, since potential release of ions may also induce local skin effects and absorption of toxic metals; (3) rigid NOAA smaller than 45nm that can penetrate and permeate the skin; (4) non rigid or flexible NOAA, where due to their flexibility liposomes and micelles can penetrate and permeate the intact skin; (5) impaired skin condition of exposed workers. Furthermore, we outline possible situations where health surveillance could be appropriate where there is NOAA occupational skin exposures, e.g. when working with nanoparticles made of sensitizer metals, NOAA containing sensitizer impurities, and/or in occupations with a high prevalence of disrupted skin barrier integrity. The paper furthermore recommends a stepwise approach to evaluate risk related to NOAA to be applied in occupational exposure and risk assessment, and discusses implications related to health surveillance, labelling, and risk communication.


Subject(s)
Nanoparticles , Occupational Exposure , Skin Absorption , Animals , Environmental Monitoring , Humans , Nanoparticles/adverse effects , Nanoparticles/analysis , Occupational Diseases/etiology , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Risk Assessment
16.
Environ Int ; 91: 150-60, 2016 May.
Article in English | MEDLINE | ID: mdl-26949868

ABSTRACT

The fast penetration of nanoproducts on the market under conditions of significant uncertainty of their environmental properties and risks to humans creates a need for companies to assess sustainability of their products. Evaluation of the potential benefits and risks to build a coherent story for communication with clients, authorities, consumers, and other stakeholders is getting to be increasingly important, but SMEs often lack the knowledge and expertise to assess risks and communicate them appropriately. This paper introduces LICARA nanoSCAN, a modular web based tool that supports SMEs in assessing benefits and risks associated with new or existing nanoproducts. This tool is unique because it is scanning both the benefits and risks over the nanoproducts life cycle in comparison to a reference product with a similar functionality in order to enable the development of sustainable and competitive nanoproducts. SMEs can use data and expert judgment to answer mainly qualitative and semi-quantitative questions as a part of tool application. Risks to public, workers and consumers are assessed, while the benefits are evaluated for economic, environmental and societal opportunities associated with the product use. The tool provides an easy way to visualize results as well as to identify gaps, missing data and associated uncertainties. The LICARA nanoSCAN has been positively evaluated by several companies and was tested in a number of case studies. The tool helps to develop a consistent and comprehensive argument on the weaknesses and strengths of a nanoproduct that may be valuable for the communication with authorities, clients and among stakeholders in the value chain. LICARA nanoSCAN identifies areas for more detailed assessments, product design improvement or application of risk mitigation measures.


Subject(s)
Nanostructures , Risk Assessment , Software , Humans , Uncertainty
17.
Ann Occup Hyg ; 60(3): 305-17, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26613611

ABSTRACT

The world-wide production of carbon nanotubes (CNTs) has increased substantially in the last decade, leading to occupational exposures. There is a paucity of exposure data of workers involved in the commercial production of CNTs. The goals of this study were to assess personal exposure to multi-walled carbon nanotubes (MWCNTs) during the synthesis and handling of MWCNTs in a commercial production facility and to link these exposure levels to specific activities. Personal full-shift filter-based samples were collected, during commercial production and handling of MWCNTs, R&D activities, and office work. The concentrations of MWCNT were evaluated on the basis of EC concentrations. Associations were studied between observed MWCNT exposure levels and location and activities. SEM analyses showed MWCNTs, present as agglomerates ranging between 200 nm and 100 µm. Exposure levels of MWCNTs observed in the production area during the full scale synthesis of MWCNTs (N = 23) were comparable to levels observed during further handling of MWCNTs (N = 19): (GM (95% lower confidence limit-95% upper confidence limit)) 41 µg m(-3) (20-88) versus 43 µg m(-3) (22-86), respectively. In the R&D area (N = 11) and the office (N = 5), exposure levels of MWCNTs were significantly (P < 0.05) lower: 5 µg m(-3) (2-11) and 7 µg m(-3) (2-28), respectively. Bagging, maintenance of the reactor, and powder conditioning were associated with higher exposure levels in the production area, whereas increased exposure levels in the R&D area were related to handling of MWCNTs powder.


Subject(s)
Environmental Monitoring/methods , Nanotubes, Carbon/analysis , Occupational Exposure/analysis , Air Pollutants, Occupational/analysis , Humans , Inhalation Exposure/analysis , Lung/chemistry , Microscopy, Electron, Scanning , Particle Size
18.
J Expo Sci Environ Epidemiol ; 26(1): 104-12, 2016.
Article in English | MEDLINE | ID: mdl-25993024

ABSTRACT

The aim of this work was to identify the key mechanisms governing transport of organic chemical substances from consumer articles to cotton wipes. The results were used to establish a mechanistic model to improve assessment of dermal contact exposure. Four types of PVC flooring, 10 types of textiles and one type of inkjet printed paper were used to establish the mechanisms and model. Kinetic extraction studies in methanol demonstrated existence of matrix diffusion and indicated the presence of a substance surface layer on some articles. Consequently, the proposed substance transfer model considers mechanical transport from a surface film and matrix diffusion in an article with a known initial total substance concentration. The estimated chemical substance transfer values to cotton wipes were comparable to the literature data (relative transfer ∼ 2%), whereas relative transfer efficiencies from spiked substrates were high (∼ 50%). For consumer articles, high correlation (r(2)=0.92) was observed between predicted and measured transfer efficiencies, but concentrations were overpredicted by a factor of 10. Adjusting the relative transfer from about 50% used in the model to about 2.5% removed overprediction. Further studies are required to confirm the model for generic use.


Subject(s)
Cotton Fiber , Floors and Floorcoverings , Ink , Paper , Polyvinyl Chloride/analysis , Skin Absorption , Textiles/analysis , Environmental Exposure/analysis , Humans , Models, Theoretical , Risk Assessment
19.
Ann Occup Hyg ; 59(6): 681-704, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25846362

ABSTRACT

BACKGROUND: Occupational exposure to manufactured nano-objects and their agglomerates, and aggregates (NOAA) has been described in several workplace air monitoring studies. However, data pooling for general conclusions and exposure estimates are hampered by limited exposure data across the occupational life cycle of NOAA and a lack in comparability between the methods of collecting and analysing the data. By applying a consistent method of collecting and analysing the workplace exposure data, this study aimed to provide information about the occupational NOAA exposure levels across various life cycle stages of NOAA in the Netherlands which can also be used for multi-purpose use. METHODS: Personal/near field task-based exposure data was collected using a multi-source exposure assessment method collecting real time particle number concentration, particle size distribution (PSD), filter-based samples for morphological, and elemental analysis and detailed contextual information. A decision logic was followed allowing a consistent and objective way of analysing the exposure data. RESULTS: In total, 46 measurement surveys were conducted at 15 companies covering 18 different exposure situations across various occupational life cycle stages of NOAA. Highest activity-effect levels were found during replacement of big bags (<1000-76000 # cm(-3)), mixing/dumping of powders manually (<1000-52000 # cm(-3)) and mechanically (<1000-100000 # cm(-3)), and spraying of liquid (2000-800000 # cm(-3)) showing a high variability between and within the various exposure situations. In general, a limited change in PSD was found during the activity compared to the background. CONCLUSIONS: This broad-scale exposure study gives a comprehensive overview of the NOAA exposure situations in the Netherlands and an indication of the levels of occupational exposure to NOAA across various life cycle of NOAA. The collected workplace exposure data and contextual information will serve as basis for future pooling of data and modelling of worker exposure.


Subject(s)
Air Pollutants, Occupational/analysis , Nanostructures , Occupational Exposure/analysis , Environmental Monitoring/methods , Humans , Inhalation Exposure/analysis , Netherlands , Occupations , Particle Size , Workplace
20.
J Expo Sci Environ Epidemiol ; 24(1): 74-81, 2014.
Article in English | MEDLINE | ID: mdl-23860399

ABSTRACT

This paper reports a study of the dispersion of manufactured nano-objects (MNOs) through the air, both in time and space, during the use of two commercially available nano-spray products and comparable products without MNOs. The main objective was to identify whether personal exposure can occur at a greater distance than the immediate proximity of the source (>1 m from the source), that is, in the "far field" (bystanders), or at a period after the emission occurred (re-entry). The spray experiments were conducted in an experimental room with well-controlled environmental and ventilation conditions (19.5 m(3)). The concentration of MNOs was investigated by measuring real-time size distribution, number, and active surface area concentration. For off-line analysis of the particles in the air, samples for scanning/transmission electron microscopy and elemental analysis were collected. The release of MNOs was measured at ∼30 and 290 cm from the source ("near field" and "far field", respectively). For all four spray products, the maximum number and surface area concentrations in the "near field" exceeded the maximum concentrations reached in the "far field". At 2 min after the emission occurred, the concentration in both the "near field" and "far field" reached a comparable steady-state level above background level. These steady-state concentrations remained elevated above background concentration throughout the entire measurement period (12 min). The results of the real-time measurement devices mainly reflect the liquid aerosols emitted by the spray process itself rather than only the MNO, which hampers the interpretation of the results. However, the combination of the off-line analysis and the results of the real-time devices indicates that after the use of nano-spray products, personal exposure to MNOs can occur not only in the near field, but also at a greater distance than the immediate proximity of the source and at a period after emission occurred.


Subject(s)
Aerosols , Inhalation Exposure/analysis , Nanoparticles , Air Pollutants/analysis , Environmental Monitoring/methods , Physics
SELECTION OF CITATIONS
SEARCH DETAIL
...