Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 37(27): 8339-8347, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34176263

ABSTRACT

Dynamics of colloidal particles can be controlled by the application of electric fields at micrometer-nanometer length scales. Here, an electric field-coupled microfluidic flow-focusing device is designed for investigating the effect of an externally applied alternating current (AC) electric field on the hydrodynamic assembly of cellulose nanofibrils (CNFs). We first discuss how the nanofibrils align parallel to the direction of the applied field without flow. Then, we apply an electric field during hydrodynamic assembly in the microfluidic channel and observe the effects on the mechanical properties of the assembled nanostructures. We further discuss the nanoscale orientational dynamics of the polydisperse and entangled fibrillar suspension of CNFs in the channel. It is shown that electric fields induced with the electrodes locally increase the degree of orientation. However, hydrodynamic alignment is demonstrated to be much more efficient than the electric field for aligning CNFs. The results are useful for understanding the development of the nanostructure when designing high-performance materials with microfluidics in the presence of external stimuli.


Subject(s)
Cellulose , Hydrodynamics , Electricity , Microfluidics , Suspensions
2.
ACS Nano ; 12(7): 6378-6388, 2018 07 24.
Article in English | MEDLINE | ID: mdl-29741364

ABSTRACT

Nanoscale building blocks of many materials exhibit extraordinary mechanical properties due to their defect-free molecular structure. Translation of these high mechanical properties to macroscopic materials represents a difficult materials engineering challenge due to the necessity to organize these building blocks into multiscale patterns and mitigate defects emerging at larger scales. Cellulose nanofibrils (CNFs), the most abundant structural element in living systems, has impressively high strength and stiffness, but natural or artificial cellulose composites are 3-15 times weaker than the CNFs. Here, we report the flow-assisted organization of CNFs into macroscale fibers with nearly perfect unidirectional alignment. Efficient stress transfer from macroscale to individual CNF due to cross-linking and high degree of order enables their Young's modulus to reach up to 86 GPa and a tensile strength of 1.57 GPa, exceeding the mechanical properties of known natural or synthetic biopolymeric materials. The specific strength of our CNF fibers engineered at multiscale also exceeds that of metals, alloys, and glass fibers, enhancing the potential of sustainable lightweight high-performance materials with multiscale self-organization.


Subject(s)
Cellulose/chemistry , Nanofibers/chemistry , Biocompatible Materials/chemistry , Cellulose/ultrastructure , Elastic Modulus , Nanofibers/ultrastructure , Nanotechnology , Tensile Strength
3.
ACS Macro Lett ; 7(8): 1022-1027, 2018 Aug 21.
Article in English | MEDLINE | ID: mdl-35650955

ABSTRACT

Successful assembly of suspended nanoscale rod-like particles depends on fundamental phenomena controlling rotational and translational diffusion. Despite the significant developments in fluidic fabrication of nanostructured materials, the ability to quantify the dynamics in processing systems remains challenging. Here we demonstrate an experimental method for characterization of the orientation dynamics of nanorod suspensions in assembly flows using orientation relaxation. This relaxation, measured by birefringence and obtained after rapidly stopping the flow, is deconvoluted with an inverse Laplace transform to extract a length distribution of aligned nanorods. The methodology is illustrated using nanocelluloses as model systems, where the coupling of rotational diffusion coefficients to particle size distributions as well as flow-induced orientation mechanisms are elucidated.

SELECTION OF CITATIONS
SEARCH DETAIL
...