Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(5): e2301531121, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38252839

ABSTRACT

The Anthropocene signifies the start of a no-analogue trajectory of the Earth system that is fundamentally different from the Holocene. This new trajectory is characterized by rising risks of triggering irreversible and unmanageable shifts in Earth system functioning. We urgently need a new global approach to safeguard critical Earth system regulating functions more effectively and comprehensively. The global commons framework is the closest example of an existing approach with the aim of governing biophysical systems on Earth upon which the world collectively depends. Derived during stable Holocene conditions, the global commons framework must now evolve in the light of new Anthropocene dynamics. This requires a fundamental shift from a focus only on governing shared resources beyond national jurisdiction, to one that secures critical functions of the Earth system irrespective of national boundaries. We propose a new framework-the planetary commons-which differs from the global commons framework by including not only globally shared geographic regions but also critical biophysical systems that regulate the resilience and state, and therefore livability, on Earth. The new planetary commons should articulate and create comprehensive stewardship obligations through Earth system governance aimed at restoring and strengthening planetary resilience and justice.

2.
Science ; 379(6630): eabp8622, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36701452

ABSTRACT

Approximately 2.5 × 106 square kilometers of the Amazon forest are currently degraded by fire, edge effects, timber extraction, and/or extreme drought, representing 38% of all remaining forests in the region. Carbon emissions from this degradation total up to 0.2 petagrams of carbon per year (Pg C year-1), which is equivalent to, if not greater than, the emissions from Amazon deforestation (0.06 to 0.21 Pg C year-1). Amazon forest degradation can reduce dry-season evapotranspiration by up to 34% and cause as much biodiversity loss as deforestation in human-modified landscapes, generating uneven socioeconomic burdens, mainly to forest dwellers. Projections indicate that degradation will remain a dominant source of carbon emissions independent of deforestation rates. Policies to tackle degradation should be integrated with efforts to curb deforestation and complemented with innovative measures addressing the disturbances that degrade the Amazon forest.


Subject(s)
Carbon , Conservation of Natural Resources , Rainforest , Biodiversity , Carbon Cycle , Brazil
3.
Nat Commun ; 12(1): 2688, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33976172

ABSTRACT

Minimizing the risks and impacts of climate change requires limiting the global temperature increase to 1.5 °C above preindustrial levels, while the difficulty of reducing carbon emissions at the necessary rate increases the likelihood of temporarily overshooting this climate target. Using simulations with the land surface model JSBACH, we show that it takes high-latitude ecosystems and the state of permafrost-affected soils several centuries to adjust to the atmospheric conditions that arise at the 1.5 °C-target. Here, a temporary warming of the Arctic entails important legacy effects and we show that feedbacks between water-, energy- and carbon cycles allow for multiple steady-states in permafrost regions, which differ with respect to the physical state of the soil, the soil carbon concentrations and the terrestrial carbon uptake and -release. The steady-states depend on the soil organic matter content at the point of climate stabilization, which is significantly affected by an overshoot-induced soil carbon loss.

5.
Proc Natl Acad Sci U S A ; 116(46): 22972-22976, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31659019

ABSTRACT

Accelerated soil erosion has become a pervasive feature on landscapes around the world and is recognized to have substantial implications for land productivity, downstream water quality, and biogeochemical cycles. However, the scarcity of global syntheses that consider long-term processes has limited our understanding of the timing, the amplitude, and the extent of soil erosion over millennial time scales. As such, we lack the ability to make predictions about the responses of soil erosion to long-term climate and land cover changes. Here, we reconstruct sedimentation rates for 632 lakes based on chronologies constrained by 3,980 calibrated 14C ages to assess the relative changes in lake-watershed erosion rates over the last 12,000 y. Estimated soil erosion dynamics were then complemented with land cover reconstructions inferred from 43,669 pollen samples and with climate time series from the Max Planck Institute Earth System Model. Our results show that a significant portion of the Earth surface shifted to human-driven soil erosion rate already 4,000 y ago. In particular, inferred soil erosion rates increased in 35% of the watersheds, and most of these sites showed a decrease in the proportion of arboreal pollen, which would be expected with land clearance. Further analysis revealed that land cover change was the main driver of inferred soil erosion in 70% of all studied watersheds. This study suggests that soil erosion has been altering terrestrial and aquatic ecosystems for millennia, leading to carbon (C) losses that could have ultimately induced feedbacks on the climate system.


Subject(s)
Ecology/history , Geologic Sediments/chemistry , Human Activities/history , Carbon Isotopes/analysis , Climate , Ecosystem , History, Ancient , Humans , Lakes/chemistry , Pollen/chemistry , Soil/chemistry
6.
Glob Chang Biol ; 25(7): 2382-2395, 2019 07.
Article in English | MEDLINE | ID: mdl-30943321

ABSTRACT

Seasonality in photosynthetic activity is a critical component of seasonal carbon, water, and energy cycles in the Earth system. This characteristic is a consequence of plant's adaptive evolutionary processes to a given set of environmental conditions. Changing climate in northern lands (>30°N) alters the state of climatic constraints on plant growth, and therefore, changes in the seasonality and carbon accumulation are anticipated. However, how photosynthetic seasonality evolved to its current state, and what role climatic constraints and their variability played in this process and ultimately in carbon cycle is still poorly understood due to its complexity. Here, we take the "laws of minimum" as a basis and introduce a new framework where the timing (day of year) of peak photosynthetic activity (DOYPmax ) acts as a proxy for plant's adaptive state to climatic constraints on its growth. Our analyses confirm that spatial variations in DOYPmax reflect spatial gradients in climatic constraints as well as seasonal maximum and total productivity. We find a widespread warming-induced advance in DOYPmax (-1.66 ± 0.30 days/decade, p < 0.001) across northern lands, indicating a spatiotemporal dynamism of climatic constraints to plant growth. We show that the observed changes in DOYPmax are associated with an increase in total gross primary productivity through enhanced carbon assimilation early in the growing season, which leads to an earlier phase shift in land-atmosphere carbon fluxes and an increase in their amplitude. Such changes are expected to continue in the future based on our analysis of earth system model projections. Our study provides a simplified, yet realistic framework based on first principles for the complex mechanisms by which various climatic factors constrain plant growth in northern ecosystems.


Subject(s)
Ecosystem , Photosynthesis , Carbon Cycle , Plants , Seasons
7.
Proc Natl Acad Sci U S A ; 116(11): 4822-4827, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30804186

ABSTRACT

Glacial-interglacial variations in CO2 and methane in polar ice cores have been attributed, in part, to changes in global wetland extent, but the wetland distribution before the Last Glacial Maximum (LGM, 21 ka to 18 ka) remains virtually unknown. We present a study of global peatland extent and carbon (C) stocks through the last glacial cycle (130 ka to present) using a newly compiled database of 1,063 detailed stratigraphic records of peat deposits buried by mineral sediments, as well as a global peatland model. Quantitative agreement between modeling and observations shows extensive peat accumulation before the LGM in northern latitudes (>40°N), particularly during warmer periods including the last interglacial (130 ka to 116 ka, MIS 5e) and the interstadial (57 ka to 29 ka, MIS 3). During cooling periods of glacial advance and permafrost formation, the burial of northern peatlands by glaciers and mineral sediments decreased active peatland extent, thickness, and modeled C stocks by 70 to 90% from warmer times. Tropical peatland extent and C stocks show little temporal variation throughout the study period. While the increased burial of northern peats was correlated with cooling periods, the burial of tropical peat was predominately driven by changes in sea level and regional hydrology. Peat burial by mineral sediments represents a mechanism for long-term terrestrial C storage in the Earth system. These results show that northern peatlands accumulate significant C stocks during warmer times, indicating their potential for C sequestration during the warming Anthropocene.

8.
Nat Commun ; 10(1): 885, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30792385

ABSTRACT

Most Earth system models agree that land will continue to store carbon due to the physiological effects of rising CO2 concentration and climatic changes favoring plant growth in temperature-limited regions. But they largely disagree on the amount of carbon uptake. The historical CO2 increase has resulted in enhanced photosynthetic carbon fixation (Gross Primary Production, GPP), as can be evidenced from atmospheric CO2 concentration and satellite leaf area index measurements. Here, we use leaf area sensitivity to ambient CO2 from the past 36 years of satellite measurements to obtain an Emergent Constraint (EC) estimate of GPP enhancement in the northern high latitudes at two-times the pre-industrial CO2 concentration (3.4 ± 0.2 Pg C yr-1). We derive three independent comparable estimates from CO2 measurements and atmospheric inversions. Our EC estimate is 60% larger than the conventionally used multi-model average (44% higher at the global scale). This suggests that most models largely underestimate photosynthetic carbon fixation and therefore likely overestimate future atmospheric CO2 abundance and ensuing climate change, though not proportionately.


Subject(s)
Carbon Cycle , Climate Change , Models, Biological , Plants/metabolism , Carbon Dioxide/metabolism , Earth, Planet , Ecosystem , Geological Phenomena , Photosynthesis , Plant Leaves/metabolism , Seasons , Temperature
9.
Nat Sustain ; 2: 122-129, 2019.
Article in English | MEDLINE | ID: mdl-30778399

ABSTRACT

Satellite data show increasing leaf area of vegetation due to direct (human land-use management) and indirect factors (climate change, CO2 fertilization, nitrogen deposition, recovery from natural disturbances, etc.). Among these, climate change and CO2 fertilization effect seem to be the dominant drivers. However, recent satellite data (2000-2017) reveal a greening pattern that is strikingly prominent in China and India, and overlapping with croplands world-wide. China alone accounts for 25% of the global net increase in leaf area with only 6.6% of global vegetated area. The greening in China is from forests (42%) and croplands (32%), but in India is mostly from croplands (82%) with minor contribution from forests (4.4%). China is engineering ambitious programs to conserve and expand forests with the goal of mitigating land degradation, air pollution and climate change. Food production in China and India has increased by over 35% since 2000 mostly due to increasing harvested area through multiple cropping facilitated by fertilizer use and surface/ground-water irrigation. Our results indicate that the direct factor is a key driver of the "Greening Earth", accounting for over a third, and likely more, of the observed net increase in green leaf area. They highlight the need for realistic representation of human land-use practices in Earth system models.

10.
J Adv Model Earth Syst ; 11(4): 998-1038, 2019 Apr.
Article in English | MEDLINE | ID: mdl-32742553

ABSTRACT

A new release of the Max Planck Institute for Meteorology Earth System Model version 1.2 (MPI-ESM1.2) is presented. The development focused on correcting errors in and improving the physical processes representation, as well as improving the computational performance, versatility, and overall user friendliness. In addition to new radiation and aerosol parameterizations of the atmosphere, several relatively large, but partly compensating, coding errors in the model's cloud, convection, and turbulence parameterizations were corrected. The representation of land processes was refined by introducing a multilayer soil hydrology scheme, extending the land biogeochemistry to include the nitrogen cycle, replacing the soil and litter decomposition model and improving the representation of wildfires. The ocean biogeochemistry now represents cyanobacteria prognostically in order to capture the response of nitrogen fixation to changing climate conditions and further includes improved detritus settling and numerous other refinements. As something new, in addition to limiting drift and minimizing certain biases, the instrumental record warming was explicitly taken into account during the tuning process. To this end, a very high climate sensitivity of around 7 K caused by low-level clouds in the tropics as found in an intermediate model version was addressed, as it was not deemed possible to match observed warming otherwise. As a result, the model has a climate sensitivity to a doubling of CO2 over preindustrial conditions of 2.77 K, maintaining the previously identified highly nonlinear global mean response to increasing CO2 forcing, which nonetheless can be represented by a simple two-layer model.

11.
Earths Future ; 6(3): 396-409, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29938210

ABSTRACT

The impacts of land use have been shown to have considerable influence on regional climate. With the recent international commitment to limit global warming to well below 2°C, emission reductions need to be ambitious and could involve major land-use change (LUC). Land-based mitigation efforts to curb emissions growth include increasing terrestrial carbon sequestration through reforestation, or the adoption of bioenergy crops. These activities influence local climate through biogeophysical feedbacks, however, it is uncertain how important they are for a 1.5° climate target. This was the motivation for HAPPI-Land: the half a degree additional warming, prognosis, and projected impacts-land-use scenario experiment. Using four Earth system models, we present the first multimodel results from HAPPI-Land and demonstrate the critical role of land use for understanding the characteristics of regional climate extremes in low-emission scenarios. In particular, our results show that changes in temperature extremes due to LUC are comparable in magnitude to changes arising from half a degree of global warming. We also demonstrate that LUC contributes to more than 20% of the change in temperature extremes for large land areas concentrated over the Northern Hemisphere. However, we also identify sources of uncertainty that influence the multimodel consensus of our results including how LUC is implemented and the corresponding biogeophysical feedbacks that perturb climate. Therefore, our results highlight the urgent need to resolve the challenges in implementing LUC across models to quantify the impacts and consider how LUC contributes to regional changes in extremes associated with sustainable development pathways.

12.
Philos Trans A Math Phys Eng Sci ; 376(2119)2018 May 13.
Article in English | MEDLINE | ID: mdl-29610382

ABSTRACT

This article investigates projected changes in temperature and water cycle extremes at 1.5°C of global warming, and highlights the role of land processes and land-use changes (LUCs) for these projections. We provide new comparisons of changes in climate at 1.5°C versus 2°C based on empirical sampling analyses of transient simulations versus simulations from the 'Half a degree Additional warming, Prognosis and Projected Impacts' (HAPPI) multi-model experiment. The two approaches yield similar overall results regarding changes in climate extremes on land, and reveal a substantial difference in the occurrence of regional extremes at 1.5°C versus 2°C. Land processes mediated through soil moisture feedbacks and land-use forcing play a major role for projected changes in extremes at 1.5°C in most mid-latitude regions, including densely populated areas in North America, Europe and Asia. This has important implications for low-emissions scenarios derived from integrated assessment models (IAMs), which include major LUCs in ambitious mitigation pathways (e.g. associated with increased bioenergy use), but are also shown to differ in the simulated LUC patterns. Biogeophysical effects from LUCs are not considered in the development of IAM scenarios, but play an important role for projected regional changes in climate extremes, and are thus of high relevance for sustainable development pathways.This article is part of the theme issue 'The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.

13.
Proc Natl Acad Sci U S A ; 112(43): E5777-86, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26460042

ABSTRACT

Abrupt transitions of regional climate in response to the gradual rise in atmospheric greenhouse gas concentrations are notoriously difficult to foresee. However, such events could be particularly challenging in view of the capacity required for society and ecosystems to adapt to them. We present, to our knowledge, the first systematic screening of the massive climate model ensemble informing the recent Intergovernmental Panel on Climate Change report, and reveal evidence of 37 forced regional abrupt changes in the ocean, sea ice, snow cover, permafrost, and terrestrial biosphere that arise after a certain global temperature increase. Eighteen out of 37 events occur for global warming levels of less than 2°, a threshold sometimes presented as a safe limit. Although most models predict one or more such events, any specific occurrence typically appears in only a few models. We find no compelling evidence for a general relation between the overall number of abrupt shifts and the level of global warming. However, we do note that abrupt changes in ocean circulation occur more often for moderate warming (less than 2°), whereas over land they occur more often for warming larger than 2°. Using a basic proportion test, however, we find that the number of abrupt shifts identified in Representative Concentration Pathway (RCP) 8.5 scenarios is significantly larger than in other scenarios of lower radiative forcing. This suggests the potential for a gradual trend of destabilization of the climate with respect to such shifts, due to increasing global mean temperature change.

14.
Glob Chang Biol ; 21(8): 3074-86, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25611824

ABSTRACT

Earth system models demonstrate large uncertainty in projected changes in terrestrial carbon budgets. The lack of inclusion of adaptive responses of vegetation communities to the environment has been suggested to hamper the ability of modeled vegetation to adequately respond to environmental change. In this study, variation in functional responses of vegetation has been added to an earth system model (ESM) based on ecological principles. The restriction of viable mean trait values of vegetation communities by the environment, called 'habitat filtering', is an important ecological assembly rule and allows for determination of global scale trait-environment relationships. These relationships were applied to model trait variation for different plant functional types (PFTs). For three leaf traits (specific leaf area, maximum carboxylation rate at 25 °C, and maximum electron transport rate at 25 °C), relationships with multiple environmental drivers, such as precipitation, temperature, radiation, and CO2 , were determined for the PFTs within the Max Planck Institute ESM. With these relationships, spatiotemporal variation in these formerly fixed traits in PFTs was modeled in global change projections (IPCC RCP8.5 scenario). Inclusion of this environment-driven trait variation resulted in a strong reduction of the global carbon sink by at least 33% (2.1 Pg C yr(-1) ) from the 2nd quarter of the 21st century onward compared to the default model with fixed traits. In addition, the mid- and high latitudes became a stronger carbon sink and the tropics a stronger carbon source, caused by trait-induced differences in productivity and relative respirational costs. These results point toward a reduction of the global carbon sink when including a more realistic representation of functional vegetation responses, implying more carbon will stay airborne, which could fuel further climate change.


Subject(s)
Carbon Sequestration , Models, Theoretical , Plants , Carbon , Carbon Dioxide , Earth, Planet , Ecological and Environmental Phenomena , Plant Leaves/anatomy & histology , Plant Leaves/metabolism , Plants/anatomy & histology , Plants/metabolism , Rain , Sunlight , Temperature , Water
16.
Nature ; 461(7260): 53-9, 2009 Sep 03.
Article in English | MEDLINE | ID: mdl-19727193

ABSTRACT

Complex dynamical systems, ranging from ecosystems to financial markets and the climate, can have tipping points at which a sudden shift to a contrasting dynamical regime may occur. Although predicting such critical points before they are reached is extremely difficult, work in different scientific fields is now suggesting the existence of generic early-warning signals that may indicate for a wide class of systems if a critical threshold is approaching.


Subject(s)
Ecosystem , Models, Biological , Models, Economic , Animals , Asthma/physiopathology , Climate , Eutrophication , Extinction, Biological , Humans , Seizures/physiopathology , Stochastic Processes
17.
Proc Natl Acad Sci U S A ; 106(49): 20596-601, 2009 Dec 08.
Article in English | MEDLINE | ID: mdl-19017807

ABSTRACT

We present a model of the global methane inventory as hydrate and bubbles below the sea floor. The model predicts the inventory of CH(4) in the ocean today to be approximately 1600-2,000 Pg of C. Most of the hydrate in the model is in the Pacific, in large part because lower oxygen levels enhance the preservation of organic carbon. Because the oxygen concentration today may be different from the long-term average, the sensitivity of the model to O(2) is a source of uncertainty in predicting hydrate inventories. Cold water column temperatures in the high latitudes lead to buildup of hydrates in the Arctic and Antarctic at shallower depths than is possible in low latitudes. A critical bubble volume fraction threshold has been proposed as a critical threshold at which gas migrates all through the sediment column. Our model lacks many factors that lead to heterogeneity in the real hydrate reservoir in the ocean, such as preferential hydrate formation in sandy sediments and subsurface gas migration, and is therefore conservative in its prediction of releasable methane, finding only 35 Pg of C released after 3 degrees C of uniform warming by using a 10% critical bubble volume. If 2.5% bubble volume is taken as critical, then 940 Pg of C might escape in response to 3 degrees C warming. This hydrate model embedded into a global climate model predicts approximately 0.4-0.5 degrees C additional warming from the hydrate response to fossil fuel CO(2) release, initially because of methane, but persisting through the 10-kyr duration of the simulations because of the CO(2) oxidation product of methane.

18.
Science ; 322(5906): 1326; author reply 1326, 2008 Nov 28.
Article in English | MEDLINE | ID: mdl-19039121

ABSTRACT

Kröpelin et al. (Research Articles, 9 May 2008, p. 765) interpreted a sediment record from Lake Yoa in the east-central part of North Africa as support for a weak biogeophysical climate-vegetation feedback in the Sahara during the mid-Holocene. We argue that the new data do not invalidate earlier modeling results on strong land-atmosphere coupling in the Western Sahara for which the Lake Yoa record is far less representative.


Subject(s)
Climate , Desert Climate , Ecosystem , Plants , Africa, Northern , Computer Simulation , Fresh Water , Geologic Sediments , History, Ancient , Time , Weather
19.
Proc Natl Acad Sci U S A ; 105(38): 14308-12, 2008 Sep 23.
Article in English | MEDLINE | ID: mdl-18787119

ABSTRACT

In the Earth's history, periods of relatively stable climate have often been interrupted by sharp transitions to a contrasting state. One explanation for such events of abrupt change is that they happened when the earth system reached a critical tipping point. However, this remains hard to prove for events in the remote past, and it is even more difficult to predict if and when we might reach a tipping point for abrupt climate change in the future. Here, we analyze eight ancient abrupt climate shifts and show that they were all preceded by a characteristic slowing down of the fluctuations starting well before the actual shift. Such slowing down, measured as increased autocorrelation, can be mathematically shown to be a hallmark of tipping points. Therefore, our results imply independent empirical evidence for the idea that past abrupt shifts were associated with the passing of critical thresholds. Because the mechanism causing slowing down is fundamentally inherent to tipping points, it follows that our way to detect slowing down might be used as a universal early warning signal for upcoming catastrophic change. Because tipping points in ecosystems and other complex systems are notoriously hard to predict in other ways, this is a promising perspective.


Subject(s)
Climate , Models, Theoretical , Forecasting , Geology , Greenhouse Effect , History, Ancient , Periodicity , Time Factors
20.
Ecol Lett ; 11(10): 1065-71, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18627410

ABSTRACT

Worldwide decomposition rates depend both on climate and the legacy of plant functional traits as litter quality. To quantify the degree to which functional differentiation among species affects their litter decomposition rates, we brought together leaf trait and litter mass loss data for 818 species from 66 decomposition experiments on six continents. We show that: (i) the magnitude of species-driven differences is much larger than previously thought and greater than climate-driven variation; (ii) the decomposability of a species' litter is consistently correlated with that species' ecological strategy within different ecosystems globally, representing a new connection between whole plant carbon strategy and biogeochemical cycling. This connection between plant strategies and decomposability is crucial for both understanding vegetation-soil feedbacks, and for improving forecasts of the global carbon cycle.


Subject(s)
Biodiversity , Plant Leaves/metabolism , Plants/genetics , Biodegradation, Environmental , Biomass , Carbon/chemistry , Climate , Phylogeny , Plant Development , Plant Leaves/genetics , Plants/metabolism , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...