Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
JMIR Infodemiology ; 3: e38390, 2023.
Article in English | MEDLINE | ID: mdl-36844029

ABSTRACT

Background: COVID-19 has introduced yet another opportunity to web-based sellers of loosely regulated substances, such as cannabidiol (CBD), to promote sales under false pretenses of curing the disease. Therefore, it has become necessary to innovate ways to identify such instances of misinformation. Objective: We sought to identify COVID-19 misinformation as it relates to the sales or promotion of CBD and used transformer-based language models to identify tweets semantically similar to quotes taken from known instances of misinformation. In this case, the known misinformation was the publicly available Warning Letters from Food and Drug Administration (FDA). Methods: We collected tweets using CBD- and COVID-19-related terms. Using a previously trained model, we extracted the tweets indicating commercialization and sales of CBD and annotated those containing COVID-19 misinformation according to the FDA definitions. We encoded the collection of tweets and misinformation quotes into sentence vectors and then calculated the cosine similarity between each quote and each tweet. This allowed us to establish a threshold to identify tweets that were making false claims regarding CBD and COVID-19 while minimizing the instances of false positives. Results: We demonstrated that by using quotes taken from Warning Letters issued by FDA to perpetrators of similar misinformation, we can identify semantically similar tweets that also contain misinformation. This was accomplished by identifying a cosine distance threshold between the sentence vectors of the Warning Letters and tweets. Conclusions: This research shows that commercial CBD or COVID-19 misinformation can potentially be identified and curbed using transformer-based language models and known prior instances of misinformation. Our approach functions without the need for labeled data, potentially reducing the time at which misinformation can be identified. Our approach shows promise in that it is easily adapted to identify other forms of misinformation related to loosely regulated substances.

2.
J Biomol Struct Dyn ; 23(1): 73-6, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15918678

ABSTRACT

We propose a method for extracting useful kinetic information from all-atom molecular dynamics simulations of protein folding. By calculating the time correlation functions between the evolution of different structural properties during the course of the simulation we can determine the endpoint of the reaction and the mechanism by which it occurs. As a test of our method we use thermal denaturation simulations on a 76 residue protein, ubiquitin. The method we present should be used in combination with current techniques for analyzing molecular dynamics trajectories.


Subject(s)
Protein Folding , Computer Simulation , Hot Temperature , Kinetics , Models, Molecular , Molecular Conformation , Protein Conformation , Protein Denaturation , Software , Temperature , Time Factors
3.
Protein Sci ; 14(3): 602-16, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15689503

ABSTRACT

Recent years have seen the publication of both empirical and theoretical relationships predicting the rates with which proteins fold. Our ability to test and refine these relationships has been limited, however, by a variety of difficulties associated with the comparison of folding and unfolding rates, thermodynamics, and structure across diverse sets of proteins. These difficulties include the wide, potentially confounding range of experimental conditions and methods employed to date and the difficulty of obtaining correct and complete sequence and structural details for the characterized constructs. The lack of a single approach to data analysis and error estimation, or even of a common set of units and reporting standards, further hinders comparative studies of folding. In an effort to overcome these problems, we define here a "consensus" set of experimental conditions (25 degrees C at pH 7.0, 50 mM buffer), data analysis methods, and data reporting standards that we hope will provide a benchmark for experimental studies. We take the first step in this initiative by describing the folding kinetics of 30 apparently two-state proteins or protein domains under the consensus conditions. The goal of our efforts is to set uniform standards for the experimental community and to initiate an accumulating, self-consistent data set that will aid ongoing efforts to understand the folding process.


Subject(s)
Biochemistry/methods , Protein Folding , Proteins/chemistry , Data Interpretation, Statistical , Kinetics , Protein Denaturation , Protein Renaturation
SELECTION OF CITATIONS
SEARCH DETAIL
...