Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Article in English | MEDLINE | ID: mdl-38070877

ABSTRACT

The gut microbiome plays an important role in the health and fitness of hosts. While previous studies have characterized the importance of various ecological and evolutionary factors in shaping the composition of the gut microbiome, most studies have been cross-sectional in nature, ignoring temporal variation. Thus, it remains unknown how these same factors might affect the stability and dynamics of the gut microbiome over time, resulting in variation across the tree of life. Here, we used samples collected in each of four seasons for three taxa: the herbivorous southern white rhinoceros (Ceratotherium simum simum, n = 5); the carnivorous Sumatran tiger (Panthera tigris sumatrae, n = 5); and the red panda (Ailurus fulgens, n = 9), a herbivorous carnivore that underwent a diet shift in its evolutionary history from carnivory to a primarily bamboo-based diet. We characterize the variability of the gut microbiome among these three taxa across time to elucidate the influence of diet and host species on these dynamics. Altogether, we found that red pandas exhibit marked seasonal variation in their gut microbial communities, experiencing both high microbial community turnover and high variation in how individual red panda's gut microbiota respond to seasonal changes. Conversely, while the gut microbiota of rhinoceros change throughout the year, all individuals respond in the same way to seasonal changes. Tigers experience relatively low levels of turnover throughout the year, yet the ways in which individuals respond to seasonal transitions are highly varied. We highlight how the differences in microbiome richness and network connectivity between these three species may affect the level of temporal stability in the gut microbiota across the year.


Subject(s)
Gastrointestinal Microbiome , Humans , Animals , Seasons , Cross-Sectional Studies , RNA, Ribosomal, 16S , Diet/veterinary , Perissodactyla
2.
Conserv Physiol ; 6(1): cox075, 2018.
Article in English | MEDLINE | ID: mdl-29399361

ABSTRACT

Mammalian herbivores have developed numerous adaptations to utilize their plant-based diets including a modified gastrointestinal tract (GIT) and symbiosis with a GIT microbiota that plays a major role in digestion and the maintenance of host health. The red panda (Ailurus fulgens) is a herbivorous carnivore that lacks the specialized GIT common to other herbivores but still relies on microorganisms for survival on its almost entirely bamboo diet. The GIT microbiota is of further importance in young red pandas, as high cub mortality is problematic and has been attributed to failure to meet nutritional requirements. To gain insight into the establishment of the GIT microbiota of red pandas, we examined microbial communities in two individuals following dietary changes associated with weaning using next-generation 16S rRNA Illumina MiSeq paired-end sequencing of faecal samples. Across all four stages (pre-weaning, during weaning, post-weaning and adult), the GIT microbial community displayed low diversity and was dominated by bacteria in the phylum Firmicutes with lesser contributions from the Proteobacteria. A core community was found consistently across all weaning stages and included species within the taxa Escherichia-Shigella, Streptococcus, Clostridium and an unclassified Clostridiaceae. Analysis of the overall community composition and structure showed that although the GIT microbiota is established early in red pandas, dietary changes during weaning further shape the community and are correlated with the presence of new bacterial species. This work is the first analysis of the GIT microbiota for red panda cubs during weaning and provides a framework for understanding how diet and host microbiota impact the development of these threatened animals.

3.
Front Microbiol ; 7: 661, 2016.
Article in English | MEDLINE | ID: mdl-27199976

ABSTRACT

Dietary shifts can result in changes to the gastrointestinal tract (GIT) microbiota, leading to negative outcomes for the host, including inflammation. Giant pandas (Ailuropoda melanoleuca) are physiologically classified as carnivores; however, they consume an herbivorous diet with dramatic seasonal dietary shifts and episodes of chronic GIT distress with symptoms including abdominal pain, loss of appetite and the excretion of mucous stools (mucoids). These episodes adversely affect the overall nutritional and health status of giant pandas. Here, we examined the fecal microbiota of two giant pandas' non-mucoid and mucoid stools and compared these to samples from a previous winter season that had historically few mucoid episodes. To identify the microbiota present, we isolated and sequenced the 16S rRNA using next-generation sequencing. Mucoids occurred following a seasonal feeding switch from predominately bamboo culm (stalk) to leaves. All fecal samples displayed low diversity and were dominated by bacteria in the phyla Firmicutes and to a lesser extent, Proteobacteria. Fecal samples immediately prior to mucoid episodes had lower microbial diversity as compared to mucoids. Mucoids were mostly comprised of common mucosal-associated taxa including Streptococcus and Leuconostoc species, and exhibited increased abundance for bacteria in the family Pasteurellaceae. Taken together, these findings indicate that mucoids may represent an expulsion of the mucosal lining that is driven by changes in diet. We suggest that these occurrences serve to reset their GIT microbiota following changes in bamboo part preference, as giant pandas have retained a carnivorous GIT anatomy while shifting to an herbivorous diet.

4.
J Sci Food Agric ; 94(9): 1706-14, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24319007

ABSTRACT

Aflatoxins are highly toxic, mutagenic, teratogenic and carcinogenic compounds produced predominantly as secondary metabolites by certain species of fungi belonging to the Aspergillus genus. Owing to the significant health risks and economic impacts associated with the presence of aflatoxins in agricultural commodities, a considerable amount of research has been directed at finding methods to prevent toxicity. This review compiles the recent literature of methods for the detoxification and management of aflatoxin in post-harvest agricultural crops using non-biological remediation.


Subject(s)
Aflatoxins , Aspergillus flavus , Crops, Agricultural , Food Contamination/prevention & control , Aflatoxins/metabolism , Crops, Agricultural/microbiology , Humans
5.
Proteomics ; 13(9): 1513-8, 2013 May.
Article in English | MEDLINE | ID: mdl-23457007

ABSTRACT

The filamentous fungus Aspergillus flavus is an opportunistic soil-borne pathogen that produces aflatoxins, the most potent naturally occurring carcinogenic compounds known. This work represents the first gel-based profiling analysis of A. flavus proteome and establishes a 2D proteome map. Using 2DE and MALDI-TOF-MS/MS, we identified 538 mycelial proteins of the aflatoxigenic strain NRRL 3357, the majority of which were functionally annotated as related to various cellular metabolic and biosynthetic processes. Additionally, a few enzymes from the aflatoxin synthesis pathway were also identified.


Subject(s)
Aspergillus flavus/metabolism , Fungal Proteins/analysis , Proteome/analysis , Aflatoxins/metabolism , Electrophoresis, Gel, Two-Dimensional/methods , Proteome/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry
6.
J Chem Ecol ; 32(11): 2489-99, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17019620

ABSTRACT

This work reports the development and use of techniques for characterizing volatile chemicals emitted by the multicolored Asian lady beetle, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), in an effort to identify the semiochemicals involved in establishment and persistence of overwintering beetle aggregations. Volatiles emitted from live beetles were detected by using whole-air sampling and solid-phase microextraction (SPME). Adsorbed volatiles were thermally desorbed and identified with gas chromatography-mass spectrometry (GC/MS). By comparing the chromatograms of volatiles emitted from live male and female beetles, a sesquiterpene, (-)-beta-caryophyllene, was found only in the females. The identity of (-)-beta-caryophyllene was confirmed by using NIST Library searches, comparing retention times with those of known standards, and by using higher-resolution GC/MS above bench top capability. Although SPME trapping detected a wider array of compounds compared to whole-air sampling, the latter method is better suited for automation. Unattended automated sampling is required for the continuous measurement of targeted compounds under dynamically changing incubation conditions. These conditions, mimicking natural overwintering conditions, are essential to our long-term goal of using this technology to detect and identify the aggregation pheromone of H. axyridis.


Subject(s)
Coleoptera/metabolism , Sesquiterpenes/analysis , Sex Factors , Animals , Automation , Female , Gas Chromatography-Mass Spectrometry , Male , Polycyclic Sesquiterpenes , Sensitivity and Specificity , Stereoisomerism
7.
Arch Insect Biochem Physiol ; 57(4): 166-77, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15540275

ABSTRACT

The kinetic mechanism and evaluation of several potential inhibitors of purified arginine kinase from the cockroach (Periplanta americana) were investigated. This monomeric phosphagen kinase is important in maintaining ATP levels during the rapid energy demands of muscle required for contraction and motility. Analysis reveals the following dissociation constants (mM) for the binary complex: E.Arg P-->E+Arg P, K=1.0; E.Arg-->E+Arg, K=0.45; E.MgATP-->E+MgATP, K=0.17; E.MgADP-->E+MgADP, K=0.12; and the ternary complex: Arg P.E.MgADP-->E.MgADP+Arg P, K=0.94; Arg.E.MgATP-->E.MgATP+Arg, K=0.49; MgATP.Enz.Arg-->E.Arg+MgATP, K=0.14; MgADP.E.Arg P-->E.Arg P+MgADP, K=0.09. For a particular substrate, the ratio of the dissociation constants for the binary to ternary complex is close to one, indicating little, if any, cooperativity in substrate binding for the rapid equilibrium, random addition mechanism. The time course of the arginine kinase reaction exhibits a pronounced curvature, which, as described for enzyme from other sources, is attributed to formation of an inhibitory catalytic dead-end complex, MgADP.E.Arg. The curvature is accentuated by the addition of monovalent anions, including borate, thiocyanate, and, most notably, nitrite and nitrate. This effect is attributed to stabilization of the dead-end complex through formation of a transition state analog. However, the substantial decrease in initial velocity (92%) caused by nitrate is due to an additional inhibitory effect, further characterized as non-competitive inhibition (Ki=8.0 mM) with the substrate L-arginine. On the other hand, borate inhibition of the initial velocity is only 30% with significant subsequent curvature, suggesting that this anion functions as an inhibitor mainly by formation of a transition state analog. However, some component of the borate inhibition appears to be mediated by an apparent partial competitive inhibition with L-arginine. D-arginine is not a substrate for arginine kinase from the cockroach, but is an effective competitive inhibitor with a Ki=0.31 mM. L-Canavanine is a weak substrate for arginine kinase (Km=6.7 mM) with a Vmax for the pure enzyme that is approximately one-third that of L-arginine. However, initial velocity experiments of substrate mixtures suggest that competition between L-canavanine and L-arginine may not be a simple summation effect and may involve a structural modification. Sensitivity of arginine kinase activity to D-arginine as well as nitrate and borate anions, coupled with the fact that L-arginine is an essential amino acid for the cockroach, suggest that arginine kinase could be a useful chemotherapeutic target for the control of cockroach proliferation.


Subject(s)
Arginine Kinase/antagonists & inhibitors , Arginine Kinase/metabolism , Periplaneta/enzymology , Animals , Arginine/metabolism , Borates/metabolism , Hydrogen-Ion Concentration , Kinetics , Nitrates/metabolism , Protein Binding , Spectrophotometry
8.
Arch Insect Biochem Physiol ; 56(2): 51-60, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15146540

ABSTRACT

The isolation and characterization of homogeneous arginine kinase from the cockroach is reported. The purification protocol produces 6.6 mg of pure enzyme from 6.8 g of whole cockroach. The purified enzyme cross-reacts with a heterologous antibody and monoclonal antibody against arginine kinase from the shrimp. Both antibody preparations also cross-react with extracts from several species known to contain monomeric arginine kinase, but fail to react with extracts from organisms containing dimeric arginine kinase. Cockroach arginine kinase has a molecular mass of approximately 43,000 determined from measurements by gel filtration and gel electrophoresis. Compared with other arginine kinases, the enzyme from the cockroach is relatively thermostable (50% activity retained at 50 degrees C for 10 min) and has a pH optima of 8.5 and 6.5-7.5, for the forward and reverse reactions, respectively. Treatment with 5,5'dithiobis[2-nitrobenzoic acid] indicates that arginine kinase has a single reactive sulfhydryl group and, interestingly, the reaction is biphasic. The Michaelis constants for the phosphagen substrates, arginine: 0.49 mM, phosphoarginine: 0.94 mM, and nucleotide substrates MgATP: 0.14 mM, MgADP: 0.09 mM, are in the range reported for other arginine kinases. A 1% solution of pure enzyme has an absorbance of 7.0 at 280 nm. Calculations based on circular dichroic spectra indicate that arginine kinase from the cockroach has 12% alpha-helical structure. The intrinsic protein fluorescence emission maximum at 340 nm suggests that tryptophan residues are below the surface of the protein and not exposed to solvent. Arginine kinase from the cockroach and shrimp are known to be deleterious immunogens towards humans. The availability of pure protein, its characterization and potential regulation of activity, will be useful in developing agents to control the cockroach population and its destructive role in agriculture and human health.


Subject(s)
Arginine Kinase/isolation & purification , Arginine Kinase/metabolism , Periplaneta/enzymology , Animals , Arginine Kinase/chemistry , Catalysis , Circular Dichroism , Enzyme Stability , Hydrogen-Ion Concentration , Invertebrates/enzymology , Molecular Weight , Protein Denaturation , Protein Structure, Secondary , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...