Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Alcohol Clin Exp Res ; 41(5): 895-910, 2017 May.
Article in English | MEDLINE | ID: mdl-28299793

ABSTRACT

BACKGROUND: Excessive alcohol (EtOH) consumption causes an imbalance in protein metabolism. EtOH impairs protein synthesis in C2C12 myoblasts via a FoxO1-AMPK-TSC2-mTORC1 pathway and also induces protein degradation. As the underlying regulatory signaling cascades for these processes are currently poorly defined, we tested the hypothesis that alcohol-induced autophagy is mediated via activation of the PIK3C3 complex that is regulated by FoxO1-AMPK. METHODS: C2C12 myoblasts were incubated with EtOH for various periods of time, and autophagy pathway-related proteins were assessed by Western blotting and immunoprecipitation. Expression of targeted genes was suppressed using electroporation of specific siRNAs and chemical inhibitors. RESULTS: Incubation of C2C12 myoblasts with 100 mM EtOH increased the autophagy markers LC3B-II and ATG7, whereas levels of SQSTM1/p62 decreased. The lysosomal inhibitor bafilomycin A1 caused a similar response, although there was no additive effect when combined with EtOH. EtOH altered ULK1 S555 and S757 phosphorylation in a time- and AMPK-dependent manner. The activation of AMPK and ULK1 was associated with increased BECN1 (S93, S14) and PIK3C3/VPS34 (S164) phosphorylation as well as increased total ATG14 and PIK3C3. These changes promoted formation of the ATG14-AMBRA1-BECN1-PIK3C3 proautophagy complex that is important in autophagosome formation. EtOH-induced changes were not associated with increased production of PtdIns3P, which may be due to enhanced PIK3C3 complex binding with 14-3-3θ. Reduction of AMPK using siRNA suppressed the stimulatory effect of EtOH on BECN1 S93, BECN1 S14, and PIK3C3 S164 phosphorylation in a time-dependent manner. Likewise, knockdown of AMPK or chemical inhibition of FoxO1 attenuated phosphorylation of ULK1 at both residues. Knockdown of ULK1 or BECN1 antagonized the effect of EtOH on LC3B-II, SQSTM1, and ATG7 protein expression. CONCLUSIONS: EtOH-induced autophagy is mediated through changes in phosphorylation and interaction of various PIK3C3 complex components. This, in turn, is regulated either directly via FoxO1-AMPK or indirectly via the FoxO1-AMPK-ULK1 signaling cascade in a mTORC1-independent or mTORC1-dependent manner.


Subject(s)
AMP-Activated Protein Kinases/physiology , Autophagy-Related Protein-1 Homolog/physiology , Autophagy-Related Proteins/metabolism , Beclin-1/metabolism , Ethanol/toxicity , Forkhead Box Protein O1/physiology , Phosphatidylinositol 3-Kinases/metabolism , Vesicular Transport Proteins/metabolism , Animals , Autophagy/drug effects , Autophagy/physiology , Cell Line , Class III Phosphatidylinositol 3-Kinases , Mice , Myoblasts/drug effects , Myoblasts/metabolism , Protein Binding/physiology
2.
J Cell Biochem ; 116(1): 91-101, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25142777

ABSTRACT

A variety of stressors including alcohol (EtOH) are known to induce collagen production and fibrotic diseases. Matrix metalloproteinases (MMP) play an important role in regulating fibrosis, but little is known regarding the relationship between EtOH and MMPs. In addition, the signaling cascades involved in this process have not been elucidated. We have identified the MMP Adamts1 as a target of EtOH regulation. To characterize the function of Adamts1, we examined EtOH-induced alterations in collagen I and elastin protein levels in C2C12 myocytes. Incubation of myocytes with 100 mM EtOH decreased elastin and increased collagen content, respectively, and these changes were associated with increased O-GLcNAc modification of Adamts1. Conversely, silencing of Adamts1 by siRNA blocked the adverse effects of EtOH on collagen and elastin levels. Similar results were obtained after treatment with a pharmacological inhibitor of MMP. Changes in collagen were due, at least in part, to a decreased interaction of Adamts1 with its endogenous inhibitor TIMP3. The AMPK inhibitor compound C blocked the EtOH-induced stimulation of collagen and O-GLcNAc Adamts1 protein. Changes in AMPK appear linked to FoxO1, since inhibition of FoxO1 blocked the effects of EtOH on AMPK phosphorylation and O-GLcNAc levels. These FoxO-dependent modifications were associated with an upregulation of the FoxO1 transcription target sestrin 3, as well as increased binding of sestrin 3 with AMPK. Collectively, these data indicate that EtOH regulates the collagen I and elastin content in an Adamts1-dependent manner in myocytes. Furthermore, Adamts1 appears to be controlled by the FoxO1-sestrin 3-AMPK signaling cascade.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Collagen/metabolism , Elastin/metabolism , Ethanol/pharmacology , Forkhead Transcription Factors/metabolism , Heat-Shock Proteins/metabolism , Muscle Cells/drug effects , Muscle Cells/metabolism , ADAM Proteins , ADAMTS1 Protein , Animals , Cell Line , Forkhead Box Protein O1 , Mice
3.
Alcohol Clin Exp Res ; 37(11): 1849-61, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23895284

ABSTRACT

BACKGROUND: Ethanol (EtOH) decreases muscle protein synthesis, and this is associated with reduced mammalian target of rapamycin complex (mTORC)1 and increased mTORC2 activities. In contrast, phospholipase D (PLD) and its metabolite phosphatidic acid (PA) positively regulate mTORC1 signaling, whereas their role in mTORC2 function is less well defined. Herein, we examine the role that PLD and PA play in EtOH-mediated mTOR signaling. METHODS: C2C12 myoblasts were incubated with EtOH for 18 to 24 hours. For PA experiments, cells were pretreated with the drug for 25 minutes followed by 50-minute incubation with PA in the presence or absence of EtOH. The phosphorylation state of various proteins was assessed by immunoblotting. Protein-protein interactions were determined by immunoprecipitation and immunoblotting. PLD activity was measured using the Amplex Red PLD assay kit. PA concentrations were determined with a total PA assay kit. RESULTS: PA levels and PLD activity increased in C2C12 myocytes exposed to EtOH (100 mM). Increased PLD activity was blocked by inhibitors of AMP-activated protein kinase (AMPK) (compound C) and phosphoinositide 3-kinase (PI3K) (wortmannin). Likewise, suppression of PLD activity with CAY10594 prevented EtOH-induced Akt (S473) phosphorylation. PLD inhibition also enhanced the binding of Rictor to mSin1 and the negative regulatory proteins Deptor and 14-3-3. Addition of PA to myocytes decreased Akt phosphorylation, but changes in mTORC2 activity were not associated with altered binding of complex members and 14-3-3. PA increased S6K1 phosphorylation, with the associated increase in mTORC1 activity being regulated by reduced phosphorylation of AMPKα (T172) and its target tuberous sclerosis protein complex (TSC)2 (S1387). This resulted in increased Rheb and RagA/RagC GTPase interactions with mTOR, as well as suppression of mTORC2. CONCLUSIONS: EtOH-induced increases in PLD activity and PA may partially counterbalance the adverse effects of this agent. EtOH and PA regulate mTORC1 via a PI3K/AMPK/TSC2/PLD signaling cascade. PA stimulates mTORC1 function and suppresses activation of mTORC2 as part of an mTORC1/2 feedback loop.


Subject(s)
Central Nervous System Depressants/pharmacology , Ethanol/pharmacology , Phosphatidic Acids/metabolism , Phospholipase D/metabolism , TOR Serine-Threonine Kinases/metabolism , AMP-Activated Protein Kinases/metabolism , Animals , Cell Line , Central Nervous System Depressants/metabolism , Ethanol/metabolism , Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 2 , Mice , Multiprotein Complexes/metabolism , Muscle Cells , Tuberous Sclerosis Complex 2 Protein , Tumor Suppressor Proteins/metabolism
4.
Am J Physiol Cell Physiol ; 302(10): C1557-65, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22442136

ABSTRACT

Leucine (Leu) and insulin both stimulate muscle protein synthesis, albeit at least in part via separate signaling pathways. While alcohol (EtOH) suppresses insulin-stimulated protein synthesis in cultured myocytes, its ability to disrupt Leu signaling and Rag GTPase activity has not been determined. Likewise, little is known regarding the interaction of EtOH and Leu on the AMPK/TSC2/Rheb pathway. Treatment of myocytes with EtOH (100 mM) decreased protein synthesis, whereas Leu (2 mM) increased synthesis. In combination, EtOH suppressed the anabolic effect of Leu. The effects of EtOH and Leu were associated with coordinate changes in the phosphorylation state of mTOR, raptor, and their downstream targets 4EBP1 and S6K1. As such, EtOH suppressed the ability of Leu to activate these signaling components. The Rag signaling pathway was activated by Leu but suppressed by EtOH, as evidenced by changes in the interaction of Rag proteins with mTOR and raptor. Overexpression of constitutively active (ca)RagA and caRagC increased mTORC1 activity, as determined by increased S6K1 phosphorylation. Furthermore, the caRagA-caRagC heterodimer blocked the inhibitory effect of EtOH. EtOH and Leu produced differential effects on AMPK signaling. EtOH enhanced AMPK activity, resulting in increased TSC2 (S1387) and eEF2 phosphorylation, whereas Leu had the opposite effect. EtOH also decreased the interaction of Rheb with mTOR, and this was prevented by Leu. Collectively, our results indicate that EtOH inhibits the anabolic effects that Leu has on protein synthesis and mTORC1 activity by modulating both Rag GTPase function and AMPK/TSC2/Rheb signaling.


Subject(s)
AMP-Activated Protein Kinases/physiology , Ethanol/pharmacology , Leucine/physiology , Monomeric GTP-Binding Proteins/physiology , Neuropeptides/physiology , Signal Transduction/physiology , Transcription Factors/physiology , Tumor Suppressor Proteins/physiology , Animals , Cells, Cultured , Ethanol/antagonists & inhibitors , Mice , Muscle Cells/drug effects , Muscle Cells/physiology , Protein Multimerization/physiology , Ras Homolog Enriched in Brain Protein , Signal Transduction/drug effects , Tuberous Sclerosis Complex 2 Protein
5.
Alcohol Clin Exp Res ; 35(8): 1445-53, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21438886

ABSTRACT

BACKGROUND: The mammalian target of rapamycin (mTOR) kinase controls cell growth, proliferation, and metabolism through 2 distinct multiprotein complexes, mTORC1 and mTORC2. We reported that alcohol (EtOH) inhibits mTORC1 activity and protein synthesis in C2C12 myoblasts. However, the role that mTORC2 plays in this process has not been elucidated. In this study, we investigated whether mTORC2 functions as part of a feedback regulator in response to EtOH, acting to maintain the balance between the functions of Akt, mTORC2, and mTORC1. METHODS: C2C12 myoblasts were incubated with EtOH for 18 to 24 hours. Levels of various mTORC2 proteins and mRNA were assessed by immunoblotting and real-time PCR, respectively, while protein-protein interactions were determined by immunoprecipitation and immunoblotting. An in vitro mTORC2 kinase activity assay was performed using Akt as a substrate. The rate of protein synthesis was determined by (35) S-methionine/cysteine incorporation into cellular protein. RESULTS: EtOH (100 mM) increased the protein and mRNA levels of the mTORC2 components rictor, mSin1, proline-rich repeat protein 5, and Deptor. There was also an increased association of these proteins with mTOR. EtOH increased the in vitro kinase activity of mTORC2, and this was correlated with decreased binding of rictor with 14-3-3 and Deptor. Reduced rictor phosphorylation at T1135 by EtOH was most likely due to decreased S6K1 activity. Knockdown of rictor elevated mTORC1 activity, as indicated by increased S6K1 phosphorylation and protein synthesis. Likewise, there were decreased amounts and/or phosphorylation levels of various mTORC1 and mTORC2 components including raptor, proline-rich Akt substrate 40 kDa, mSin1, Deptor, and GßL. Activated PP2A was associated with decreased Akt and eukaryotic elongation factor 2 phosphorylation. Collectively, our results provide evidence of a homeostatic balance between the 2 mTOR complexes following EtOH treatments in myoblasts. CONCLUSIONS: EtOH increased the activity of mTORC2 by elevating levels of various components and their interaction with mTOR. Decreased rictor phosphorylation at T1135 acts as mTORC1-dependent feedback mechanisms, functioning in addition to the insulin receptor substrate-I/PI3K signaling pathway to regulate protein synthesis.


Subject(s)
Carrier Proteins/drug effects , Central Nervous System Depressants/toxicity , Ethanol/toxicity , Myoblasts/drug effects , Trans-Activators/physiology , Animals , Central Nervous System Depressants/metabolism , Ethanol/metabolism , Immunoprecipitation , Mice , Myoblasts/metabolism , Proto-Oncogene Proteins c-akt/drug effects , Proto-Oncogene Proteins c-akt/physiology , Rapamycin-Insensitive Companion of mTOR Protein , Trans-Activators/drug effects , Transcription Factors , Transfection
6.
J Biol Chem ; 285(30): 23359-70, 2010 Jul 23.
Article in English | MEDLINE | ID: mdl-20457600

ABSTRACT

The key gluconeogenic enzyme fructose-1,6-bisphosphatase (FBPase) is induced when Saccharomyces cerevisiae are starved of glucose. However, when glucose is added to cells that have been starved for 3 days, FBPase is degraded in the vacuole. FBPase is first imported to Vid (vacuole import and degradation) vesicles, and these vesicles then merge with the endocytic pathway. In this report we show that two additional gluconeogenic enzymes, isocitrate lyase and phosphoenolpyruvate carboxykinase, were also degraded in the vacuole via the Vid pathway. These new cargo proteins and FBPase interacted with the TORC1 complex during glucose starvation. However, Tor1p was dissociated from FBPase after the addition of glucose. FBPase degradation was inhibited in cells overexpressing TOR1, suggesting that excessive Tor1p is inhibitory. Both Tco89p and Tor1p were found in endosomes coming from the plasma membrane as well as in retrograde vesicles forming from the vacuole membrane. When TORC1 was inactivated by rapamycin, FBPase degradation was inhibited. We suggest that TORC1 interacts with multiple cargo proteins destined for the Vid pathway and plays an important role in the degradation of FBPase in the vacuole.


Subject(s)
Cell Membrane/metabolism , Endosomes/metabolism , Multiprotein Complexes/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Transport Vesicles/metabolism , Vacuoles/metabolism , Vesicular Transport Proteins/metabolism , Cell Membrane/drug effects , Cell Membrane/enzymology , Chromatography, Affinity , Gene Expression Regulation, Fungal , Glucose/metabolism , Glucose/pharmacology , Kinetics , Protein Transport , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Sirolimus/pharmacology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Transport Vesicles/drug effects , Vacuoles/drug effects , Vacuoles/enzymology
7.
J Cell Biochem ; 109(6): 1172-84, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20127721

ABSTRACT

The mTORC1 protein kinase complex consists of mTOR, raptor, mLST8/GbetaL and PRAS40. Previously, we reported that mTOR plays an important role in regulating protein synthesis in response to alcohol (EtOH). However, the mechanisms by which EtOH regulates mTORC1 activity have not been established. Here, we investigated the effect of EtOH on the phosphorylation and interaction of components of mTORC1 in C2C12 myocytes. We also examined the specific role that PRAS40 plays in this process. Incubation of myocytes with EtOH (100 mM, 24 h) increased raptor and PRAS40 phosphorylation. Likewise, there were increased levels of the PRAS40 upstream regulators Akt and IRS-1. EtOH also caused changes in mTORC1 protein-protein interactions. EtOH enhanced the binding of raptor and PRAS40 with mTOR. These alterations occurred in concert with increased binding of 14-3-3 to raptor, while the PRAS40 and 14-3-3 interaction was not affected. The shRNA knockdown (KD) of PRAS40 decreased protein synthesis similarly to EtOH. PRAS40 KD increased raptor phosphorylation and its association with 14-3-3, whereas decreased GbetaL-mTOR binding. The effects of EtOH and PRAS40 KD were mediated by AMPK. Both factors increased in vitro AMPK activity towards the substrate raptor. In addition, KD enhanced the activity of AMPK towards TSC2. Collectively, our results indicate that EtOH stabilizes the association of raptor, PRAS40, and GbetaL with mTOR, while likewise increasing the interaction of raptor with 14-3-3. These data suggest a possible mechanism for the inhibitory effects of EtOH on mTOR kinase activity and protein synthesis in myocytes.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Ethanol/pharmacology , Gene Expression Regulation/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Phosphoproteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Transcription Factors/metabolism , AMP-Activated Protein Kinases/genetics , Adaptor Proteins, Signal Transducing , Animals , Carrier Proteins/metabolism , Cell Line , Immunoblotting , Immunoprecipitation , Mechanistic Target of Rapamycin Complex 1 , Mice , Multiprotein Complexes , Muscle Cells/drug effects , Muscle Cells/metabolism , Phosphoproteins/genetics , Phosphorylation/drug effects , Protein Binding/drug effects , Proteins , RNA Interference , Regulatory-Associated Protein of mTOR , Signal Transduction/drug effects , TOR Serine-Threonine Kinases , Transcription Factors/genetics
8.
J Biol Chem ; 285(2): 1516-28, 2010 Jan 08.
Article in English | MEDLINE | ID: mdl-19892709

ABSTRACT

When glucose is added to yeast cells that are starved for 3 days, fructose-1,6-bisphosphatase (FBPase) and malate dehydrogenase 2 are degraded in the vacuole via the vacuole import and degradation (Vid) pathway. In this study, we examined the distribution of FBPase at the ultrastructural level. FBPase was observed in areas close to the plasma membrane and in cytoplasmic structures that are heterogeneous in size and density. We have isolated these intracellular structures that contain FBPase, the Vid vesicle marker Vid24p, and the endosomal marker Pep12p. They appeared irregular in size and shape. In yeast, actin polymerization plays an important role in early steps of endocytosis. Mutants that affect actin polymerization inhibited FBPase degradation, suggesting that actin polymerization is important for FBPase degradation. Both FBPase and malate dehydrogenase 2 were associated with actin patches. Vid vesicle proteins such as Vid24p or Sec28p were also at actin patches, although they dissociated from these structures at later time points. We propose that Vid24p and Sec28p are present at actin patches during glucose starvation. Cargo proteins arrive at these sites following the addition of glucose, and the endocytic vesicles then pinch off from the plasma membrane. Following the fusion of endosomes with the vacuole, cargo proteins are then degraded in the vacuole.


Subject(s)
Actins/metabolism , Cell Membrane/metabolism , Endocytosis/physiology , Malate Dehydrogenase/metabolism , Saccharomyces cerevisiae/metabolism , Vacuoles/metabolism , Actins/genetics , Cell Membrane/genetics , Coatomer Protein/genetics , Coatomer Protein/metabolism , Endocytosis/drug effects , Fructose-Bisphosphatase/genetics , Fructose-Bisphosphatase/metabolism , Glucose/pharmacology , Malate Dehydrogenase/genetics , Protein Transport/drug effects , Protein Transport/physiology , Qa-SNARE Proteins , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sweetening Agents/pharmacology , Vacuoles/genetics , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
9.
Commun Integr Biol ; 2(2): 177-83, 2009.
Article in English | MEDLINE | ID: mdl-19513275

ABSTRACT

In Saccharomyces cerevisiae, glucose starvation induces key gluconeogenic enzymes such as fructose-1,6-bisphosphatase (FBPase), malate dehydrogenase (MDH2) and phosphoenolpyruvate carboxykinase, while glucose addition inactivates these enzymes. Significant progress has been made identifying mechanisms that mediate the "catabolite inactivation" of FBPase and MDH2. For example, the site of their degradation has been shown to change, depending on the duration of starvation. When glucose is added to short-termed starved cells, these proteins are degraded in the proteasome. However, when glucose is added to long-termed starved cells, they are degraded in the vacuole by a selective autophagy pathway. For the vacuole pathway, these proteins are first imported into novel vesicles called Vid (vacuole import and degradation) vesicles. Following import, Vid vesicles merge with the endocytic pathway. Future experiments will be directed at understanding the molecular mechanisms that regulate the switch from proteasomal to vacuolar degradation and determining the site of Vid vesicle biogenesis.

10.
J Cell Biochem ; 105(3): 814-23, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18712774

ABSTRACT

HIV anti-retroviral drugs decrease protein synthesis, although the underlying regulatory mechanisms of this process are not fully established. Therefore, we investigated the effects of the HIV protease inhibitor lopinavir (LPV) on protein metabolism. We also characterized the mechanisms that mediate the effects of this drug on elongation factor-2 (eEF2), a key component of the translational machinery. Treatment of C2C12 myocytes with LPV produced a dose-dependent inhibitory effect on protein synthesis. This effect was observed at 15 min and was maintained for at least 4 h. Mechanistically, LPV increased the phosphorylation of eEF2 and thereby decreased the activity of this protein. Increased phosphorylation of eEF2 was associated with increased activity of its upstream regulators AMP-activated protein kinase (AMPK) and eEF2 kinase (eEF2K). Both AMPK and eEF2K directly phosphorylated eEF2 in an in vitro kinase assay suggesting two distinct paths lead to eEF2 phosphorylation. To verify this connection, myocytes were treated with the AMPK inhibitor compound C. Compound C blocked eEF2K and eEF2 phosphorylation, demonstrating that LPV affects eEF2 activity via an AMPK-eEF2K dependent pathway. In contrast, incubation of myocytes with rottlerin suppressed eEF2K, but not eEF2 phosphorylation, suggesting that eEF2 can be regulated independent of eEF2K. Finally, LPV did not affect PP2A activity when either eEF2 or peptide was used as the substrate. Collectively, these results indicate that LPV decreases protein synthesis, at least in part, via inhibition of eEF2. This appears regulated by AMPK which can act directly on eEF2 or indirectly via the action of eEF2K.


Subject(s)
AMP-Activated Protein Kinases/metabolism , HIV Protease Inhibitors/pharmacology , Peptide Elongation Factor 2/metabolism , Protein Biosynthesis/drug effects , Pyrimidinones/pharmacology , Animals , Cells, Cultured , Elongation Factor 2 Kinase/metabolism , Lopinavir , Mice , Peptide Elongation Factor 2/antagonists & inhibitors , Phosphorylation
11.
J Biol Chem ; 283(38): 26116-27, 2008 Sep 19.
Article in English | MEDLINE | ID: mdl-18660504

ABSTRACT

The gluconeogenic enzyme fructose-1,6-bisphosphatase (FBPase) is degraded in the vacuole when glucose is added to glucose-starved cells. Before it is delivered to the vacuole, however, FBPase is imported into intermediate carriers called Vid (vacuole import and degradation) vesicles. Here, using biochemical and genetic approaches, we identified a requirement for SEC28 in FBPase degradation. SEC28 encodes the epsilon-COP subunit of COPI (coat protein complex I) coatomer proteins. When SEC28 and other coatomer genes were mutated, FBPase degradation was defective and FBPase association with Vid vesicles was impaired. Coatomer proteins were identified as components of Vid vesicles, and they formed a protein complex with a Vid vesicle-specific protein, Vid24p. Furthermore, Vid24p association with Vid vesicles was impaired when coatomer genes were mutated. Kinetic studies indicated that Sec28p traffics to multiple locations. Sec28p was in Vid vesicles, endocytic compartments, and the vacuolar membrane in various mutants that block the FBPase degradation pathway. Sec28p was also found in vesicles adjacent to the vacuolar membrane in the ret2-1 coatomer mutant. We propose that Sec28p resides in Vid vesicles, and these vesicles converge with the endocytic pathway. After fusion, Sec28p is distributed on the vacuolar membrane, where it concentrates on vesicles that pinch off from this organelle. FBPase also utilizes the endocytic pathway for transport to the vacuole, as demonstrated by its presence in endocytic compartments in the Deltavph1 mutant. Taken together, our results indicate a strong connection between the Vid trafficking pathway and the endocytic pathway.


Subject(s)
Coatomer Protein/metabolism , Endocytosis , Fructose-Bisphosphatase/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Base Sequence , Centrifugation, Density Gradient , Coat Protein Complex I/chemistry , Coatomer Protein/chemistry , Cross-Linking Reagents/pharmacology , Green Fluorescent Proteins/metabolism , Kinetics , Microscopy, Fluorescence , Models, Biological , Molecular Sequence Data , Mutation , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Vacuoles/metabolism
12.
J Biol Chem ; 282(6): 3702-12, 2007 Feb 09.
Article in English | MEDLINE | ID: mdl-17164244

ABSTRACT

Ethanol decreases protein synthesis in cells, although the underlying regulatory mechanisms of this process are not fully established. In the present study incubation of C2C12 myocytes with 100 mm EtOH decreased protein synthesis while markedly increasing the phosphorylation of eukaryotic elongation factor 2 (eEF2), a key component of the translation machinery. Both mTOR and MEK pathways were found to play a role in regulating the effect of EtOH on eEF2 phosphorylation. Rapamycin, an inhibitor of mammalian target of rapamycin, and the MEK inhibitor PD98059 blocked the EtOH-induced phosphorylation of eEF2, whereas the p38 MAPK inhibitor SB202190 had no effect. Unexpectedly, EtOH decreased the phosphorylation and activity of the eEF2 upstream regulator eEF2 kinase. Likewise, treatment of cells with the inhibitor rottlerin did not block the stimulatory effect of EtOH on eEF2, suggesting that eEF2 kinase (eEF2K) does not play a role in regulating eEF2. In contrast, increased eEF2 phosphorylation was correlated with an increase in AMP-activated protein kinase (AMPK) phosphorylation and activity. Compound C, an inhibitor of AMPK, suppressed the effects of EtOH on eEF2 phosphorylation but had no effect on eEF2K, indicating that AMPK regulates eEF2 independent of eEF2K. Finally, EtOH decreased protein phosphatase 2A activity when either eEF2 or AMPK was used as the substrate. Thus, this later action may partially account for the increased phosphorylation of eEF2 in response to EtOH and the observed sensitivity of AMPK to rapamycin and PD98059 treatments. Collectively, the induction of eEF2 phosphorylation by EtOH is controlled by an increase in AMPK and a decrease in protein phosphatase 2A activity.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Ethanol/pharmacology , Multienzyme Complexes/physiology , Muscle Cells/enzymology , Muscle, Skeletal/enzymology , Protein Serine-Threonine Kinases/physiology , AMP-Activated Protein Kinases , Animals , Calcium-Calmodulin-Dependent Protein Kinases/antagonists & inhibitors , Cell Line , Elongation Factor 2 Kinase , Ethanol/chemistry , Mice , Muscle Cells/drug effects , Muscle Cells/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Phosphorylation/drug effects , Protein Synthesis Inhibitors/chemistry , Protein Synthesis Inhibitors/pharmacology , Signal Transduction/drug effects , Signal Transduction/physiology
13.
Alcohol Clin Exp Res ; 30(8): 1297-307, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16899032

ABSTRACT

BACKGROUND: Alcohol and the antiretroviral drug indinavir (Ind) decrease protein synthesis in skeletal muscle under in vivo and in vitro conditions. The goal of the present study was to identify signaling mechanisms responsible for the inhibitory effect of ethanol (EtOH) and Ind on protein synthesis. METHODS: C2C12 mouse myocytes were incubated with EtOH, Ind, or a combination of both for 24 hours. The rate of protein synthesis was determined by [35S]methionine/cysteine incorporation into cellular protein. Phosphorylation of eukaryotic initiation and elongation factors were quantitated by Western blot analysis to identify potential mechanisms for regulating translation. RESULTS: Treatment of myocytes with Ind or EtOH for 24 hours decreased protein synthesis by 19 and 22%, respectively, while a 35% decline was observed in cells treated simultaneously with both agents. Mechanistically, treatment with EtOH or Ind decreased the phosphorylation of the S6 ribosomal protein, and this reduction was associated with decreased S6K1 and p90rsk phosphorylation. Ethanol also decreased the phosphorylation of ERK1/2, mTOR, and 4EBP1, while Ind only suppressed ERK1/2 phosphorylation. Both agents inhibited the phosphorylation of Mnk1 and its upstream regulator p38 MAPK, and they decreased the amount of the active eukaryotic initiation factor (eIF) 4G/eIF4E complex. Finally, EtOH and/or Ind increased phosphorylation of the eukaryotic elongation factor (eEF)-2 by 1.6- to 6-fold. The effects of these agents were not additive, although the combination did exert a greater effect on S6K1 and eEF2 phosphorylation. CONCLUSIONS: Ethanol and Ind decreased protein synthesis in myocytes and this response was associated with changes in the phosphorylation of proteins that regulate translation initiation and elongation.


Subject(s)
Ethanol/pharmacology , Indinavir/pharmacology , Mitogen-Activated Protein Kinases/metabolism , Muscle Cells/drug effects , Protein Biosynthesis/drug effects , Protein Kinases/metabolism , Animals , Cells, Cultured , History, Ancient , Mice , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Muscle Cells/metabolism , Phosphorylation/drug effects , Protein Biosynthesis/physiology , TOR Serine-Threonine Kinases
14.
AIDS Res Hum Retroviruses ; 21(10): 854-62, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16225412

ABSTRACT

Combined antiretroviral drug regimens have promoted clinical, immunologic, and virologic improvements in AIDS patients. Nevertheless, these therapies are associated with derangements in lipid and carbohydrate metabolism. In this study, we examined the effects of a representative protease inhibitor (nelfinavir), a nonnucleoside reverse transcriptase inhibitor (nevirapine), and a nucleoside reverse transcriptase inhibitor (zidovudine) on protein synthesis in skeletal muscle cells. To examine these processes, C2C12 myocytes were treated with increasing concentrations of nelfinavir, nevirapine, or zidovudine for 1 or 2 days, and rates of protein synthesis were determined by measuring [35S]methionine/cysteine incorporation into cellular proteins. Treatment of myocytes with therapeutic concentrations of nelfinavir, nevirapine, or zidovudine for 48 hr decreased protein synthesis by 14-20%. An approximately 60% decline was observed in cells treated with higher concentrations of nevirapine or nelfinavir. In contrast, the basal rate of protein synthesis was not affected when cells were incubated with these compounds for 24 hr. Therapeutic concentrations of nelfinavir and nevirapine did not impair the anabolic effect of insulin on protein synthesis. However, zidovudine suppressed the stimulatory effect of insulin. The decreased protein synthesis induced by nelfinavir and zidovudine was associated with decreases in the phosphorylation of the S6 ribosomal protein (rpS6) and the repressor binding protein 4EBP1, while the inhibitory effect of nevirapine was mainly associated with a decline in phosphorylated 4EBP1. In conclusion, nelfinavir, nevirapine, and zidovudine treatments decreased protein synthesis in myocytes and this effect was correlated with a reduction in the phosphorylation level of proteins that regulate translation initiation.


Subject(s)
Anti-HIV Agents/pharmacology , Muscle Cells/drug effects , Nelfinavir/pharmacology , Nevirapine/pharmacology , Protein Synthesis Inhibitors/pharmacology , Ribosomal Protein S6/metabolism , Zidovudine/pharmacology , Animals , Cell Line , Mice , Muscle Cells/metabolism , Phosphorylation
15.
Autophagy ; 1(3): 146-56, 2005.
Article in English | MEDLINE | ID: mdl-16874049

ABSTRACT

The key gluconeogenic enzyme fructose-1,6-bisphosphatase (FBPase) is induced during glucose starvation. After the addition of glucose, inactivated FBPase is selectively targeted to Vid (vacuolar import and degradation) vesicles and then to the vacuole for degradation. To identify proteins involved in this pathway, we screened various libraries for mutants that failed to degrade FBPase. Via these approaches, subunits of the vacuolar- H+ -ATPase (V-ATPase) have been identified repeatedly. The V-ATPase has established roles in endocytosis, sorting of carboxypeptidase Y and homotypic vacuole fusion. Here, we show that mutants lacking Stv1p, Vph1p, and other subunits of the V-ATPase are defective for FBPase degradation. FBPase was detected in Vid vesicles. However, most FBPase was resistant to proteinase K digestion in the Deltavph1 or vma mutants, whereas the majority of FBPase was sensitive to proteinase K digestion in the Deltastv1 mutant. Therefore, STV1 and VPH1 have distinct functions in FBPase degradation. In cells lacking V0 genes, Vma2p and Vma5p were still detected on Vid vesicles and vacuoles, suggesting that the distribution of V1 proteins is independent of V0 genes. The V0 and V1 domains are assembled following a glucose shift and the assembly is not regulated by protein kinase A and RAV genes. Assembly of the V0 complex is necessary for FBPase trafficking, since mutants that block the assembly and transport of V0 out of the ER were defective in FBPase degradation.


Subject(s)
Fructose-Bisphosphatase/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Vacuoles/enzymology , Glucose/metabolism , Mutation , Protein Subunits/genetics , Protein Subunits/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/genetics , Signal Transduction , Vacuolar Proton-Translocating ATPases/genetics
16.
J Biol Chem ; 279(47): 49138-50, 2004 Nov 19.
Article in English | MEDLINE | ID: mdl-15358789

ABSTRACT

The key gluconeogenic enzyme fructose-1,6-bisphosphatase (FBPase) is subjected to catabolite inactivation and degradation when glucose-starved cells are replenished with fresh glucose. In various studies, the proteasome and the vacuole have each been reported to be the major site of FBPase degradation. Because different growth conditions were used in these studies, we examined whether variations in growth conditions could alter the site of FBPase degradation. Here, we demonstrated that FBPase was degraded outside the vacuole (most likely in the proteasome), when glucose was added to cells that were grown in low glucose media for a short period of time. By contrast, cells that were grown in the same low glucose media for longer periods of time degraded FBPase in the vacuole in response to glucose. Another gluconeogenic enzyme malate dehydrogenase (MDH2) showed the same degradation characteristics as FBPase in that the short term starvation of cells led to a non-vacuolar degradation, whereas long term starvation resulted in the vacuolar degradation of this protein. The N-terminal proline is required for the degradation of FBPase and MDH2 for both the vacuolar and non-vacuolar proteolytic pathways. The cAMP signaling pathway and the phosphorylation of glucose were needed for the vacuolar-dependent degradation of FBPase and MDH2. By contrast, the cAMP-dependent signaling pathway was not involved in the non-vacuolar degradation of these proteins, although the phosphorylation of glucose was required.


Subject(s)
Fructose-Bisphosphatase/chemistry , Glucose/metabolism , Malate Dehydrogenase/chemistry , Saccharomyces cerevisiae/enzymology , Binding Sites , Centrifugation , Cyclic AMP/metabolism , DNA Primers/chemistry , Fructose-Bisphosphatase/metabolism , Glucose/chemistry , Green Fluorescent Proteins/metabolism , Malate Dehydrogenase/metabolism , Mutagenesis , Mutation , Open Reading Frames , Phosphorylation , Plasmids/metabolism , Polymerase Chain Reaction , Proline/chemistry , Protein Structure, Tertiary , Signal Transduction , Time Factors , Vacuoles/chemistry , Vacuoles/metabolism
17.
Am J Physiol Cell Physiol ; 287(5): C1482-92, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15229102

ABSTRACT

Anti-retroviral therapy promotes clinical, immunologic, and virologic improvement in human immunodeficiency virus-infected patients. Whereas this therapy adversely affects carbohydrate and lipid metabolism, the effects of anti-retroviral drugs on muscle protein synthesis and degradation have not been reported. To examine these processes, we treated C2C12 myocytes with increasing concentrations of the protease inhibitor indinavir for 1 or 2 days. Treatment of myocytes with a therapeutic concentration of indinavir (20 microM) for 24 h decreased basal protein synthesis by 18%, whereas a 42% decline was observed after 48 h. A similar decrement, albeit quantitatively smaller, was detected with other protease inhibitors. Indinavir did not alter the rate of proteolysis. Likewise, indinavir did not impair the anabolic effect of insulin-like growth factor-I on protein synthesis. Mechanistically, indinavir decreased the phosphorylation of the S6 ribosomal protein (rpS6), and this reduction was associated with a decreased phosphorylation of p70S6 kinase and p90rsk as well as the upstream regulators ERK1/2 and MEK1/2. Indinavir also decreased the phosphorylation of Mnk1 and its upstream effectors, p38 MAPK and ERK1/2. Indinavir did not affect the phosphorylation of mTOR or 4E-BP1, but it did decrease the amount of the active eukaryotic initiation factor eIF4G-eIF4E complex. In conclusion, indinavir decreased protein synthesis in myocytes. This decrease was associated with the disruption of the ERK1/2 and p38 MAPK pathways and a reduction in both the level of functional eIF4F complex and rpS6 phosphorylation.


Subject(s)
HIV Protease Inhibitors/pharmacology , Indinavir/pharmacology , Mitogen-Activated Protein Kinases/drug effects , Muscle Cells/drug effects , Animals , Cell Division , Cells, Cultured , Dose-Response Relationship, Drug , Eukaryotic Initiation Factor-4F/drug effects , Eukaryotic Initiation Factor-4F/metabolism , Intracellular Signaling Peptides and Proteins , Mice , Phosphorylation , Protein Serine-Threonine Kinases/drug effects , Protein Serine-Threonine Kinases/metabolism , Ribosomal Protein S6/drug effects , Ribosomal Protein S6/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/drug effects , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/drug effects , Ribosomal Protein S6 Kinases, 90-kDa/metabolism
18.
J Biol Chem ; 279(11): 9713-24, 2004 Mar 12.
Article in English | MEDLINE | ID: mdl-14684743

ABSTRACT

Protein phosphatases play an important role in vesicular trafficking and membrane fusion processes. The type 1 phosphatase Glc7p and its regulatory subunit Reg1p were identified as required components in the glucose-induced targeting of the key gluconeogenic enzyme fructose-1,6-bisphosphatase (FBPase) to the vacuole for degradation. The interaction of Reg1p with Glc7p was important for the transport of FBPase from intermediate vacuole import and degradation (Vid) vesicles to vacuoles. The glc7-T152K mutant strain exhibited a reduced Reg1p binding along with defects in FBPase degradation and Vid vesicle trafficking to the vacuole. In this mutant, Vid vesicles were the most defective components, whereas the vacuole was also defective. Shp1p and Glc8p regulate Glc7p phosphatase activity and are required for FBPase degradation. In the Deltashp1 and Deltaglc8 strains, Reg1p-Glc7p interaction was not affected, suggesting that phosphatase activity is also necessary for FBPase degradation. Similar to those seen in the glc7-T152K mutant, the Deltashp1 and Deltaglc8 mutants exhibited severely defective Vid vesicles, but partially defective vacuoles. Taken together, our results suggest that Reg1p-Glc7p interaction and Glc7p phosphatase activity play a required role in the Vid vesicle to vacuole-trafficking step along the FBPase degradation pathway.


Subject(s)
Fructose-Bisphosphatase/metabolism , Glucose/metabolism , Phosphoprotein Phosphatases/physiology , Saccharomyces cerevisiae Proteins/physiology , Vacuoles/metabolism , Biological Transport , Centrifugation , Fructose/metabolism , Intracellular Signaling Peptides and Proteins , Mutation , Phosphorylation , Precipitin Tests , Protein Binding , Protein Phosphatase 1 , Protein Transport , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Time Factors
19.
J Biol Chem ; 278(28): 25688-99, 2003 Jul 11.
Article in English | MEDLINE | ID: mdl-12730205

ABSTRACT

The key gluconeogenic enzyme fructose-1,6-bisphosphatase (FBPase) is targeted to Vid vesicles when glucose-starved cells are replenished with glucose. Vid vesicles then deliver FBPase to the vacuole for degradation. A modified alkaline phosphatase assay was developed to study the trafficking of Vid vesicles to the vacuole. For this assay, FBPase was fused with a truncated form of alkaline phosphatase. Under in vivo conditions, FBPase-delta60Pho8p was targeted to the vacuole via Vid vesicles, and it exhibited Pep4p- and Vid24p-dependent alkaline phosphatase activation. Vid vesicle-vacuole targeting was reconstituted using Vid vesicles that contained FBPase-delta60Pho8p. These vesicles were incubated with vacuoles in the presence of cytosol and an ATP-regenerating system. Under in vitro conditions, alkaline phosphatase was also activated in a Pep4p- and Vid24p-dependent manner. The GTPase Ypt7p was identified as an essential component in Vid vesicle-vacuole trafficking. Likewise, a number of v-SNAREs (Ykt6p, Nyv1p, Vti1p) and homotypic fusion vacuole protein sorting complex family members (Vps39p and Vps41p) were required for the proper function of Vid vesicles. In contrast, the t-SNARE Vam3p was a necessary vacuolar component. Vid vesicle-vacuole trafficking exhibits characteristics similar to heterotypic membrane fusion events.


Subject(s)
Fructose-Bisphosphatase/metabolism , Membrane Fusion , Membrane Proteins/chemistry , Recombinant Fusion Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Vacuoles/metabolism , Vesicular Transport Proteins , Alkaline Phosphatase/metabolism , Aspartic Acid Endopeptidases/metabolism , Cytosol/metabolism , Glucose/pharmacology , Membrane Proteins/metabolism , Plasmids/metabolism , Qa-SNARE Proteins , Recombinant Fusion Proteins/metabolism , SNARE Proteins , Saccharomyces cerevisiae/metabolism , Time Factors
20.
Am J Physiol Endocrinol Metab ; 285(1): E63-72, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12644450

ABSTRACT

Growth hormone (GH) stimulates insulin-like growth factor I (IGF-I) synthesis in both liver and muscle. During sepsis, proinflammatory cytokines inhibit GH action in liver, but it is unknown whether sepsis also produces GH resistance in muscle. Sepsis was induced by cecal ligation and puncture, and 18 h later the effect of GH on signal transducer and activator of transcription (STAT) phosphorylation and IGF-I mRNA content was assessed in rat gastrocnemius and liver. The relative abundance of phosphorylated (p)STAT5a, pSTAT5b, pSTAT3, and pSTAT1 was increased in liver from control rats after GH. Sepsis alone also increased hepatic pSTAT5a, pSTAT3, and pSTAT1. Sepsis dramatically impaired the ability of GH to stimulate the phosphorylation of STAT5a and -5b, as well as to increase IGF-I mRNA in liver. In muscle from control rats, GH increased pSTAT5a and -5b, whereas content of pSTAT3 and pSTAT1 was not affected. Sepsis increased basal content of pSTAT3 but not pSTAT5a, pSTAT5b, or pSTAT1 in muscle. The GH-induced increase of pSTAT5a and -5b in muscle from septic rats was not inhibited, suggesting that muscle was not GH resistant. In contrast to these changes in pSTAT5, the ability of GH to increase IGF-I mRNA was completely absent in muscle from septic rats. Because the suppressor of cytokine signaling (SOCS) proteins may function as negative regulators of GH signaling, we examined the content of these proteins. Sepsis produced small (30-50%), albeit statistically significant, increases in SOCS-1, -2, and -3 protein in muscle. In contrast to muscle, the SOCS proteins in the liver did not change under the various experimental conditions, suggesting that these proteins are not responsible for the impaired phosphorylation of STAT5 by GH. In conclusion, sepsis produces GH resistance in both muscle and liver, with the locus of this impairment in muscle differing from that in liver and being independent of a defect in STAT5 phosphorylation.


Subject(s)
DNA-Binding Proteins/metabolism , Growth Hormone/physiology , Milk Proteins , Muscle, Skeletal/physiopathology , Sepsis/physiopathology , Trans-Activators/metabolism , Animals , Escherichia coli/metabolism , Humans , Immunoblotting , Insulin-Like Growth Factor I/biosynthesis , Lipopolysaccharides/toxicity , Liver/metabolism , Male , Muscle, Skeletal/drug effects , Phosphorylation , Precipitin Tests , RNA/biosynthesis , RNA/isolation & purification , RNA, Messenger/biosynthesis , Rats , Rats, Sprague-Dawley , STAT5 Transcription Factor , Signal Transduction/physiology , Tumor Suppressor Proteins , Tyrosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...