Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
ACS Nano ; 14(7): 8570-8583, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32677822

ABSTRACT

Femtosecond (fs) laser pulsed excitation of plasmonic nanoparticle (NP)-biomolecule conjugates is a promising method to locally heat biological materials. Studies have demonstrated that fs pulses of light can modulate the activity of DNA or proteins when attached to plasmonic NPs; however, the precision over subsequent biological function remains largely undetermined. Specifically, the temperature the localized biomolecules "experience" remains unknown. We used 55 nm gold nanoparticles (AuNPs) displaying double-stranded (ds) DNA to examine how, for dsDNA with different melting temperatures, the laser pulse energy fluence and bulk solution temperature affect the rate of local DNA denaturation. A universal "template" single-stranded DNA was attached to the AuNP surface, and three dye-labeled probe strands, distinct in length and melting temperature, were hybridized to it creating three individual dsDNA-AuNP bioconjugates. The dye-labeled probe strands were used to quantify the rate and amount of DNA release after a given number of light pulses, which was then correlated to the dsDNA denaturation temperature, resulting in a quantitative nanothermometer. The localized DNA denaturation rate could be modulated by more than threefold over the biologically relevant range of 8-53 °C by varying pulse energy fluence, DNA melting temperature, and surrounding bath temperature. With a modified dissociation equation tailored for this system, a "sensed" temperature parameter was extracted and compared to simulated AuNP temperature profiles. Determining actual biological responses in such systems can allow researchers to design precision nanoscale photothermal heating sources.


Subject(s)
Gold , Metal Nanoparticles , DNA , Lasers , Temperature
2.
Small ; 15(14): e1805384, 2019 04.
Article in English | MEDLINE | ID: mdl-30803148

ABSTRACT

DNA can process information through sequence-based reorganization but cannot typically receive input information from most biological processes and translate that into DNA compatible language. Coupling DNA to a substrate responsive to biological events can address this limitation. A two-component sensor incorporating a chimeric peptide-DNA substrate is evaluated here as a protease-to-DNA signal convertor which transduces protease activity through DNA gates that discriminate between different input proteases. Acceptor dye-labeled peptide-DNAs are assembled onto semiconductor quantum dot (QD) donors as the input gate. Addition of trypsin or chymotrypsin cleaves their cognate peptide sequence altering the efficiency of Förster resonance energy transfer (FRET) with the QD and frees a DNA output which interacts with a tetrahedral output gate. Downstream output gate rearrangement results in FRET sensitization of a new acceptor dye. Following characterization of component assembly and optimization of individual steps, sensor ability to discriminate between the two proteases is confirmed along with effects from joint interactions where potential for cross-talk is highest. Processing multiple bits of information for a sensing outcome provides more confidence than relying on a single change especially for the discrimination between different targets. Coupling other substrates to DNA that respond similarly could help target other types of enzymes.


Subject(s)
Biosensing Techniques/instrumentation , DNA/metabolism , Nanotechnology/instrumentation , Peptide Hydrolases/metabolism , Fluorescence Resonance Energy Transfer , Nanoparticles/ultrastructure , Peptides/chemistry , Quantum Dots/chemistry , Trypsin/metabolism
3.
ACS Sens ; 3(10): 1894-2024, 2018 10 26.
Article in English | MEDLINE | ID: mdl-30080029

ABSTRACT

Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current "gold" standards for biothreat detection/diagnostics along with a listing of relevant FDA approved in vitro diagnostic devices is then discussed to provide an overview of the current state of the art. Given the 2014 outbreak of Ebola virus in Western Africa and the recent 2016 spread of Zika virus in the Americas, discussion of what constitutes a public health emergency and how new in vitro diagnostic devices are authorized for emergency use in the U.S. are also included. The majority of the Review is then subdivided around the sensing of bacterial, viral, and toxin biothreats with each including an overview of the major agents in that class, a detailed cross-section of different sensing methods in development based on assay format or analytical technique, and some discussion of related microfluidic lab-on-a-chip/point-of-care devices. Finally, an outlook is given on how this field will develop from the perspective of the biosensing technology itself and the new emerging threats they may face.


Subject(s)
Bacteria/isolation & purification , Biological Warfare Agents , Biosensing Techniques/methods , Viruses/isolation & purification , Biological Warfare Agents/classification , Humans , Immunoassay , Limit of Detection , Point-of-Care Systems , Toxins, Biological/analysis , Virus Diseases/diagnosis
4.
ACS Appl Mater Interfaces ; 9(35): 30185-30195, 2017 Sep 06.
Article in English | MEDLINE | ID: mdl-28809101

ABSTRACT

We report a versatile microsphere-supported lipid bilayer system that can serve as a general-purpose platform for implementing DNA nanotechnologies on a fluid surface. To demonstrate our platform, we implemented both toehold-mediated strand displacement (TMSD) and DNAzyme reactions, which are typically performed in solution and which are the cornerstone of DNA-based molecular logic and dynamic DNA nanotechnology, on the surface. We functionalized microspheres bearing supported lipid bilayers (µSLBs) with membrane-bound nucleic acid components. Using functionalized µSLBs, we developed TMSD and DNAzyme reactions by optimizing reaction conditions to reduce nonspecific interactions between DNA and phospholipids and to enhance bilayer stability. Additionally, the physical and optical properties of the bilayer were tuned via lipid composition and addition of fluorescently tagged lipids to create stable and multiplexable µSLBs that are easily read out by flow cytometry. Multiplexed TMSD reactions on µSLBs enabled the successful operation of a Dengue serotyping assay that correctly identified all 16 patterns of target sequences to demonstrate detection of DNA strands derived from the sequences of all four Dengue serotypes. The limit of detection for this assay was 3 nM. Furthermore, we demonstrated DNAzyme reactions on a fluid lipid surface, which benefit from free diffusion on the surface. This work provides the basis for expansion of both TMSD and DNAzyme based molecular reactions on supported lipid bilayers for use in molecular logic and DNA nanotechnology. As our system is multiplexable and results in fluid surfaces, it may be of use in compartmentalization and improved kinetics of molecular logic reactions and as a useful building block in a variety of DNA nanotechnology systems.


Subject(s)
Lipid Bilayers/chemistry , DNA , Microspheres , Nanotechnology
5.
ACS Sens ; 2(3): 401-410, 2017 Mar 24.
Article in English | MEDLINE | ID: mdl-28723206

ABSTRACT

DNA nanostructures provide a reliable and predictable scaffold for precisely positioning fluorescent dyes to form energy transfer cascades. Furthermore, these structures and their attendant dye networks can be dynamically manipulated by biochemical inputs, with the changes reflected in the spectral response. However, the complexity of DNA structures that have undergone such types of manipulation for direct biosensing applications is quite limited. Here, we investigate four different modification strategies to effect such dynamic manipulations using a DNA dendrimer scaffold as a testbed, and with applications to biosensing in mind. The dendrimer has a 2:1 branching ratio that organizes the dyes into a FRET-based antenna in which excitonic energy generated on multiple initial Cy3 dyes displayed at the periphery is then transferred inward through Cy3.5 and/or Cy5 relay dyes to a Cy5.5 final acceptor at the focus. Advantages of this design included good transfer efficiency, large spectral separation between the initial donor and final acceptor emissions for signal transduction, and an inherent tolerance to defects. Of the approaches to structural rearrangement, the first two mechanisms we consider employed either toehold-mediated strand displacement or strand replacement and their impact was mainly via direct transfer efficiency, while the other two were more global in their effect using either a belting mechanism or an 8-arm star nanostructure to compress the nanostructure and thereby modulate its spectral response through an enhancement in parallelism. The performance of these mechanisms, their ability to reset, and how they might be utilized in biosensing applications are discussed.

6.
ACS Nano ; 11(6): 5884-5896, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28603969

ABSTRACT

Combining biomolecules such as enzymes with nanoparticles has much to offer for creating next generation synergistically functional bionanomaterials. However, almost nothing is known about how these two disparate components interact at this critical biomolecular-materials interface to give rise to improved activity and emergent properties. Here we examine how the nanoparticle surface can influence and increase localized enzyme activity using a designer experimental system consisting of trypsin proteolysis acting on peptide-substrates displayed around semiconductor quantum dots (QDs). To minimize the complexity of analyzing this system, only the chemical nature of the QD surface functionalizing ligands were modified. This was accomplished by synthesizing a series of QD ligands that were either positively or negatively charged, zwitterionic, neutral, and with differing lengths. The QDs were then assembled with different ratios of dye-labeled peptide substrates and exposed to trypsin giving rise to progress curves that were monitored by Förster resonance energy transfer (FRET). The resulting trypsin activity profiles were analyzed in the context of detailed molecular dynamics simulations of key interactions occurring at this interface. Overall, we find that a combination of factors can give rise to a localized activity that was 35-fold higher than comparable freely diffusing enzyme-substrate interactions. Contributing factors include the peptide substrate being prominently displayed extending from the QD surface and not sterically hindered by the longer surface ligands in conjunction with the presence of electrostatic and other productive attractive forces between the enzyme and the QD surface. An intimate understanding of such critical interactions at this interface can produce a set of guidelines that will allow the rational design of next generation high-activity bionanocomposites and theranostics.

7.
Nanoscale Horiz ; 2(5): 241-252, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-32260679

ABSTRACT

Accumulating studies by many groups have found consistent enhancement in a wide variety of enzyme activities when they are displayed around nanoparticles. However, the underlying mechanism(s) that give rise to this phenomenon are still largely unknown. Herein, we develop a detailed reaction scheme that considers many of the various possible interactions between a substrate and a given enzyme-nanoparticle bioconjugate. The properties and some functional predictions that emanate from the reaction scheme were then tested using a model system where the homotetrameric beta-galactosidase enzyme complex was assembled with luminescent semiconductor nanocrystalline quantum dots displayed around its periphery. This type of assembly occurs as the ∼465 kDa enzyme complex is significantly larger than the 4.2 nm diameter green emitting quantum dots utilized. This unique architecture, in conjunction with the fact that this enzyme functions at or near the diffusion limit, provided a unique opportunity to selectively probe certain aspects of enzyme enhancement when attached to a nanoparticle with minimal potential perturbations to the native enzyme structure. Experimental assays were conducted where both free enzymes and quantum dot-decorated enzymes were compared directly in side-by-side samples and included formats where the kinetic processes were challenged with increasing viscosity and competitive inhibitors. The results strongly suggest that it is possible for there to be significant enhancements in an enzyme's catalytic rate or kcat after attachment to a nanoparticle even when it is apparently diffusion limited without requiring any gross changes to the enzyme's structure. A discussion of how this reaction scheme and model can be applied to other systems is provided.

8.
Mater Today (Kidlington) ; 19(8): 464-477, 2016 Oct.
Article in English | MEDLINE | ID: mdl-32288600

ABSTRACT

The danger posed by biological threat agents and the limitations of modern detection methods to rapidly identify them underpins the need for continued development of novel sensors. The application of nanomaterials to this problem in recent years has proven especially advantageous. By capitalizing on large surface/volume ratios, dispersability, beneficial physical and chemical properties, and unique nanoscale interactions, nanomaterial-based biosensors are being developed with sensitivity and accuracy that are starting to surpass traditional biothreat detection methods, yet do so with reduced sample volume, preparation time, and assay cost. In this review, we start with an overview of bioagents and then highlight the breadth of nanoscale sensors that have recently emerged for their detection.

9.
Chembiochem ; 16(5): 725-30, 2015 Mar 23.
Article in English | MEDLINE | ID: mdl-25663617

ABSTRACT

Pathogen detection is an important problem in many areas of medicine and agriculture, which can involve genomic or transcriptomic signatures or small-molecule metabolites. We report a unified, DNA-based sensor architecture capable of isothermal detection of double-stranded DNA targets, single-stranded oligonucleotides, and small molecules. Each sensor contains independent target detection and reporter modules, enabling rapid design. We detected gene variants on plasmids by using a straightforward isothermal denaturation protocol. The sensors were highly specific, even with a randomized DNA background. We achieved a limit of detection of ∼15 pM for single-stranded targets and ∼5 nM for targets on denatured plasmids. By incorporating a blocked aptamer sequence, we also detected small molecules using the same sensor architecture. This work provides a starting point for multiplexed detection of multi-strain pathogens, and disease states caused by genetic variants (e.g., sickle cell anemia).


Subject(s)
Biosensing Techniques , DNA Probes/analysis , DNA/analysis , Oligonucleotides/analysis , Temperature , DNA/genetics , DNA Probes/genetics , Green Fluorescent Proteins/analysis , Nucleic Acid Denaturation , Oligonucleotides/genetics
10.
Methods Appl Fluoresc ; 3(4): 042006, 2015 Oct 29.
Article in English | MEDLINE | ID: mdl-29148511

ABSTRACT

Probes that exploit Förster resonance energy transfer (FRET) in their feedback mechanism are touted for their sensitivity, robustness, and low background, and thanks to the exceptional distance dependence of the energy transfer process, they provide a means of probing lengthscales well below the resolution of light. These attributes make FRET-based probes superbly suited to an intracellular environment, and recent developments in biofunctionalization and expansion of imaging capabilities have put them at the forefront of intracellular studies. Here, we present an overview of the engineering and execution of a variety of recent intracellular FRET probes, highlighting the diversity of this class of materials and the breadth of application they have found in the intracellular environment.

11.
PLoS One ; 9(10): e110986, 2014.
Article in English | MEDLINE | ID: mdl-25347066

ABSTRACT

The development of large-scale molecular computational networks is a promising approach to implementing logical decision making at the nanoscale, analogous to cellular signaling and regulatory cascades. DNA strands with catalytic activity (DNAzymes) are one means of systematically constructing molecular computation networks with inherent signal amplification. Linking multiple DNAzymes into a computational circuit requires the design of substrate molecules that allow a signal to be passed from one DNAzyme to another through programmed biochemical interactions. In this paper, we chronicle an iterative design process guided by biophysical and kinetic constraints on the desired reaction pathways and use the resulting substrate design to implement heterogeneous DNAzyme signaling cascades. A key aspect of our design process is the use of secondary structure in the substrate molecule to sequester a downstream effector sequence prior to cleavage by an upstream DNAzyme. Our goal was to develop a concrete substrate molecule design to achieve efficient signal propagation with maximal activation and minimal leakage. We have previously employed the resulting design to develop high-performance DNAzyme-based signaling systems with applications in pathogen detection and autonomous theranostics.


Subject(s)
DNA, Catalytic/chemistry , Genetic Engineering , Quantitative Structure-Activity Relationship , Biophysics , Catalysis , DNA, Catalytic/metabolism , Nucleic Acid Conformation , Substrate Specificity
12.
Angew Chem Int Ed Engl ; 53(28): 7183-7, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-24890874

ABSTRACT

Signal propagation through enzyme cascades is a critical component of information processing in cellular systems. Although such systems have potential as biomolecular computing tools, rational design of synthetic protein networks remains infeasible. DNA strands with catalytic activity (DNAzymes) are an attractive alternative, enabling rational cascade design through predictable base-pair hybridization principles. Multi-layered DNAzyme signaling and logic cascades are now reported. Signaling between DNAzymes was achieved using a structured chimeric substrate (SCS) that releases a downstream activator after cleavage by an upstream DNAzyme. The SCS can be activated by various upstream DNAzymes, can be coupled to DNA strand-displacement devices, and is highly resistant to interference from background DNA. This work enables the rational design of synthetic DNAzyme regulatory networks, with potential applications in biomolecular computing, biodetection, and autonomous theranostics.


Subject(s)
DNA, Catalytic/metabolism , Signal Transduction , Biosensing Techniques , DNA, Catalytic/chemistry , DNA, Catalytic/genetics , Models, Molecular , Nucleic Acid Hybridization , Substrate Specificity
13.
Chembiochem ; 15(7): 950-4, 2014 May 05.
Article in English | MEDLINE | ID: mdl-24692254

ABSTRACT

Chemical reactions catalyzed by DNAzymes offer a route to programmable modification of biomolecules for therapeutic purposes. To this end, we have developed a new type of catalytic DNA-based logic gates in which DNAzyme catalysis is controlled via toehold-mediated strand displacement reactions. We refer to these as DNAzyme displacement gates. The use of toeholds to guide input binding provides a favorable pathway for input recognition, and the innate catalytic activity of DNAzymes allows amplification of nanomolar input concentrations. We demonstrate detection of arbitrary input sequences by rational introduction of mismatched bases into inhibitor strands. Furthermore, we illustrate the applicability of DNAzyme displacement to compute logic functions involving multiple logic gates. This work will enable sophisticated logical control of a range of biochemical modifications, with applications in pathogen detection and autonomous theranostics.


Subject(s)
Algorithms , DNA, Catalytic/metabolism , DNA/metabolism , Base Pair Mismatch , Catalysis , DNA/chemistry , DNA, Catalytic/chemistry , Nucleic Acid Hybridization , Oligonucleotides/chemistry , Oligonucleotides/metabolism
14.
Ann Biomed Eng ; 36(4): 580-5, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18317930

ABSTRACT

A recent analytical solution of the three-dimensional Stokes flow through a bumpy tube predicts that for a given bump area, there exists an optimal circumferential wavenumber which minimizes flow resistance. This study uses measurements of microvessel endothelial cell morphology to test whether this prediction holds in the microvasculature. Endothelial cell (EC) morphology was measured in blood perfused in situ microvessels in anesthetized mice using confocal intravital microscopy. EC borders were identified by immunofluorescently labeling the EC surface molecule ICAM-1 which is expressed on the surface but not in the EC border regions. Comparison of this theory with extensive in situ measurements of microvascular EC geometry in mouse cremaster muscle using intravital microscopy reveals that the spacing of EC nuclei in venules ranging from 27 to 106 microm in diameter indeed lies quite close to this predicted optimal configuration. Interestingly, arteriolar ECs are configured to minimize flow resistance not in the resting state, but at the dilated vessel diameter. These results raise the question of whether less organized circulatory systems, such as that found in newly formed solid tumors or in the developing embryo, may deviate from the optimal bump spacing predicted to minimize flow resistance.


Subject(s)
Blood Flow Velocity/physiology , Endothelial Cells/cytology , Endothelial Cells/physiology , Mechanotransduction, Cellular/physiology , Microcirculation/cytology , Microcirculation/physiology , Models, Cardiovascular , Animals , Cell Size , Cells, Cultured , Computer Simulation , Mice , Mice, Inbred C57BL , Muscle, Skeletal/blood supply , Muscle, Skeletal/cytology , Muscle, Skeletal/physiology , Vascular Resistance/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...