Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolomics ; 14(1): 17, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29681789

ABSTRACT

INTRODUCTION: Biomarkers are needed in inflammatory bowel disease (IBD) to help define disease activity and identify underlying pathogenic mechanisms. We hypothesized that serum metabolomics, which produces unique metabolite profiles, can aid in this search. OBJECTIVES: The aim of this study was to characterize serum metabolomic profiles in patients with IBD, and to assess for differences between patients with ulcerative colitis (UC), Crohn's disease (CD), and non- IBD subjects. METHODS: Serum samples from 20 UC, 20 CD, and 20 non-IBD control subjects were obtained along with patient characteristics, including medication use and clinical disease activity. Non-targeted metabolomic profiling was performed using ultra-high performance liquid chromatography/mass spectrometry (UPLC-MS/MS) optimized for basic or acidic species and hydrophilic interaction liquid chromatography (HILIC/UPLC-MS/MS). RESULTS: In total, 671 metabolites were identified. Comparing IBD and control subjects revealed 173 significantly altered metabolites (27 increased and 146 decreased). The majority of the alterations occurred in lipid-, amino acid-, and energy-related metabolites. Comparing only CD and control subjects revealed 286 significantly altered metabolites (54 increased and 232 decreased), whereas comparing UC and control subjects revealed only 5 significantly altered metabolites (all decreased). Hierarchal clustering using significant metabolites separated CD from UC and control subjects. CONCLUSIONS: We demonstrate that a number of lipid-, amino acid-, and tricarboxylic acid (TCA) cycle- related metabolites were significantly altered in IBD patients, more specifically in CD. Therefore, alterations in lipid and amino acid metabolism and energy homeostasis may play a key role in the pathogenesis of CD.

2.
PLoS One ; 11(5): e0156387, 2016.
Article in English | MEDLINE | ID: mdl-27227540

ABSTRACT

BACKGROUND AND AIMS: Ulcerative colitis (UC) is associated with increased dietary intake of fat and n-6 polyunsaturated fatty acids (PUFA). Modification of fat metabolism may alter inflammation and disease severity. Our aim was to assess differences in dietary and serum fatty acid levels between control and UC subjects and associations with disease activity and inflammatory cytokines. METHODS: Dietary histories, serum, and colonic tissue samples were prospectively collected from 137 UC subjects and 38 controls. Both histologic injury and the Mayo Disease Activity Index were assessed. Serum and tissue cytokines were measured by Luminex assay. Serum fatty acids were obtained by gas chromatography. RESULTS: UC subjects had increased total fat and oleic acid (OA) intake, but decreased arachidonic acid (AA) intake vs controls. In serum, there was less percent saturated fatty acid (SFA) and AA, with higher monounsaturated fatty acids (MUFA), linoleic acid, OA, eicosapentaenoic acid (EPA), and docosapentaenoic acid (DPA) in UC. Tissue cytokine levels were directly correlated with SFA and inversely correlated with PUFA, EPA, and DPA in UC subjects, but not controls. 5-aminosalicylic acid therapy blunted these associations. CONCLUSIONS: In summary, we found differences in serum fatty acids in UC subjects that correlated with pro-inflammatory tissue cytokines. We propose that fatty acids may affect cytokine production and thus be immunomodulatory in UC.


Subject(s)
Colitis, Ulcerative/blood , Cytokines/blood , Fatty Acids, Unsaturated/blood , Adult , Aged , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Colon/metabolism , Colon/pathology , Female , Humans , Inflammation/blood , Inflammation/drug therapy , Inflammation/pathology , Male , Mesalamine/administration & dosage , Middle Aged , Prospective Studies
3.
Inflamm Bowel Dis ; 22(8): 1847-58, 2016 08.
Article in English | MEDLINE | ID: mdl-27104830

ABSTRACT

BACKGROUND: L-arginine (L-Arg) is the substrate for both inducible nitric oxide (NO) synthase (NOS2) and arginase (ARG) enzymes. L-Arg is actively transported into cells by means of cationic amino acid transporter (SLC7) proteins. We have linked L-Arg and arginase 1 activity to epithelial restitution. Our aim was to determine if L-Arg, related amino acids, and metabolic enzymes are altered in ulcerative colitis (UC). METHODS: Serum and colonic tissues were prospectively collected from 38 control subjects and 137 UC patients. Dietary intake, histologic injury, and clinical disease activity were assessed. Amino acid levels were measured by high-performance liquid chromatography. Messenger RNA (mRNA) levels were measured by real-time PCR. Colon tissue samples from 12 Crohn's disease patients were obtained for comparison. RESULTS: Dietary intake of arginine and serum L-Arg levels were not different in UC patients versus control subjects. In active UC, tissue L-Arg was decreased, whereas L-citrulline (L-Cit) and the L-Cit/L-Arg ratio were increased. This pattern was also seen when paired involved (left) versus uninvolved (right) colon tissues in UC were assessed. In active UC, SLC7A2 and ARG1 mRNA levels were decreased, whereas ARG2 and NOS2 were increased. Similar alterations in mRNA expression occurred in tissues from Crohn's disease patients. In involved UC, SLC7A2 and ARG1 mRNA levels were decreased, and NOS2 and ARG2 increased, when compared with uninvolved tissues. CONCLUSIONS: Patients with UC exhibit diminished tissue L-Arg, likely attributable to decreased cellular uptake and increased consumption by NOS2. These findings combined with decreased ARG1 expression indicate a pattern of dysregulated L-Arg availability and metabolism in UC.


Subject(s)
Amino Acids/metabolism , Arginine/metabolism , Arginine/pharmacokinetics , Colitis, Ulcerative/metabolism , Colon/metabolism , RNA, Messenger/metabolism , Amino Acid Transport Systems, Basic/genetics , Arginase/genetics , Arginine/blood , Biological Availability , Case-Control Studies , Citrulline/metabolism , Clinical Trials as Topic , Colitis, Ulcerative/blood , Colitis, Ulcerative/pathology , Crohn Disease/metabolism , Diet Records , Humans , Nitric Oxide Synthase Type II/genetics , Prospective Studies , Severity of Illness Index
4.
PLoS One ; 8(12): e82300, 2013.
Article in English | MEDLINE | ID: mdl-24367513

ABSTRACT

Accurate and high-throughput technologies are needed for identification of new therapeutic targets and for optimizing therapy in inflammatory bowel disease. Our aim was to assess multi-analyte protein-based assays of cytokines/chemokines using Luminex technology. We have reported that Luminex-based profiling was useful in assessing response to L-arginine therapy in the mouse model of dextran sulfate sodium colitis. Therefore, we studied prospectively collected samples from ulcerative colitis (UC) patients and control subjects. Serum, colon biopsies, and clinical information were obtained from subjects undergoing colonoscopy for evaluation of UC or for non-UC indications. In total, 38 normal controls and 137 UC cases completed the study. Histologic disease severity and the Mayo Disease Activity Index (DAI) were assessed. Serum and colonic tissue cytokine/chemokine profiles were measured by Luminex-based multiplex testing of 42 analytes. Only eotaxin-1 and G-CSF were increased in serum of patients with histologically active UC vs. controls. While 13 cytokines/chemokines were increased in active UC vs. controls in tissues, only eotaxin-1 was increased in all levels of active disease in both serum and tissue. In tissues, eotaxin-1 correlated with the DAI and with eosinophil counts. Increased eotaxin-1 levels were confirmed by real-time PCR. Tissue eotaxin-1 levels were also increased in experimental murine colitis induced by dextran sulfate sodium, oxazolone, or Citrobacter rodentium, but not in murine Helicobacter pylori infection. Our data implicate eotaxin-1 as an etiologic factor and therapeutic target in UC, and indicate that Luminex-based assays may be useful to assess IBD pathogenesis and to select patients for anti-cytokine/chemokine therapies.


Subject(s)
Chemokine CCL11/metabolism , Colitis, Ulcerative/metabolism , Adult , Animals , Colitis, Ulcerative/blood , Colitis, Ulcerative/chemically induced , Female , Gastritis/blood , Gastritis/metabolism , Gastritis/microbiology , Helicobacter pylori/pathogenicity , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Oxazolone/toxicity , Prospective Studies
6.
Gut ; 62(10): 1446-55, 2013 Oct.
Article in English | MEDLINE | ID: mdl-22833394

ABSTRACT

OBJECTIVE: The myeloid translocation genes (MTGs) are transcriptional corepressors with both Mtg8(-/-) and Mtgr1(-/-) mice showing developmental and/or differentiation defects in the intestine. We sought to determine the role of MTG16 in intestinal integrity. METHODS: Baseline and stress induced colonic phenotypes were examined in Mtg16(-/-) mice. To unmask phenotypes, we treated Mtg16(-/-) mice with dextran sodium sulphate (DSS) or infected them with Citrobacter rodentium and the colons were examined for ulceration and for changes in proliferation, apoptosis and inflammation. RESULTS: Mtg16(-/-) mice have altered immune subsets, suggesting priming towards Th1 responses. Mtg16(-/-) mice developed increased weight loss, diarrhoea, mortality and histological colitis and there were increased innate (Gr1(+), F4/80(+), CD11c(+) and MHCII(+); CD11c(+)) and Th1 adaptive (CD4) immune cells in Mtg16(-/-) colons after DSS treatment. Additionally, there was increased apoptosis and a compensatory increased proliferation in Mtg16(-/-) colons. Compared with wild-type mice, Mtg16(-/-) mice exhibited increased colonic CD4;IFN-γ cells in vehicle-treated and DSS-treated mice. Adoptive transfer of wild-type marrow into Mtg16(-/-) recipients did not rescue the Mtg16(-/-) injury phenotype. Isolated colonic epithelial cells from DSS-treated Mtg16(-/-) mice exhibited increased KC (Cxcl1) mRNA expression when compared with wild-type mice. Mtg16(-/-) mice infected with C rodentium had more severe colitis and greater bacterial colonisation. Last, MTG16 mRNA levels were reduced in human ulcerative colitis versus normal colon tissues. CONCLUSIONS: These observations indicate that MTG16 is critical for colonocyte survival and regeneration in response to intestinal injury and provide evidence that this transcriptional corepressor regulates inflammatory recruitment in response to injury.


Subject(s)
Colitis/pathology , Nuclear Proteins/physiology , Transcription Factors/physiology , Adaptive Immunity , Adoptive Transfer , Animals , Bone Transplantation , Cell Proliferation , Colitis/chemically induced , Colitis/immunology , Colitis/physiopathology , Colitis, Ulcerative/metabolism , Colon/immunology , Dextran Sulfate , Enterocytes/pathology , Female , Humans , Immunity, Innate , Immunophenotyping , Intestinal Absorption/physiology , Intestinal Mucosa/pathology , Intestinal Mucosa/physiopathology , Male , Mice , Mice, Knockout , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Permeability , Repressor Proteins , Th1 Cells/immunology , Transcription Factors/deficiency , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...