Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
bioRxiv ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38826241

ABSTRACT

Acarbose is a type-2 diabetes medicine that inhibits dietary starch breakdown into glucose by inhibiting host amylase and glucosidase enzymes. Numerous gut species in the Bacteroides genus enzymatically break down starch and change in relative abundance within the gut microbiome in acarbose-treated individuals. To mechanistically explain this observation, we used two model starch-degrading Bacteroides, Bacteroides ovatus (Bo) and Bacteroides thetaiotaomicron (Bt). Bt growth is severely impaired by acarbose whereas Bo growth is not. The Bacteroides use a starch utilization system (Sus) to grow on starch. We hypothesized that Bo and Bt Sus enzymes are differentially inhibited by acarbose. Instead, we discovered that although acarbose primarily targets the Sus periplasmic GH97 enzymes in both organisms, the drug affects starch processing at multiple other points. Acarbose competes for transport through the Sus beta-barrel proteins and binds to the Sus transcriptional regulators. Further, Bo expresses a non-Sus GH97 (BoGH97D) when grown in starch with acarbose. The Bt homolog, BtGH97H, is not expressed in the same conditions, nor can overexpression of BoGH97D complement the Bt growth inhibition in the presence of acarbose. This work informs us about unexpected complexities of Sus function and regulation in Bacteroides, including variation between related species. Further, this indicates that the gut microbiome may be a source of variable response to acarbose treatment for diabetes.

2.
Front Public Health ; 12: 1389054, 2024.
Article in English | MEDLINE | ID: mdl-38887261

ABSTRACT

Climate change is expected to profoundly impact health and coping and widen social and environmental inequalities. People living in informal settlements are especially vulnerable to climate change as they are often located in ecologically sensitive areas more susceptible to extreme weather events (EWEs), such as floods, droughts, and heat waves. Women residing in informal settlements are especially vulnerable to climate change and related EWEs because they are more likely to experience worse health-related impacts than men but are less likely to have access to health-related services. Despite this inequality, there is a dearth of research that focuses on the impacts of EWEs on women in informal settlements. This study aims to explore the multidimensional impacts of EWEs on the daily lives of women in informal settlements through the lens of socio-ecological theory. Study data is from six monthly surveys (1 September 2022-28 February 2023) collected from a probability sample of 800 women living in two of the largest informal settlements in Nairobi, Kenya. This data is part of an ongoing longitudinal study that uses community participatory methods to investigate the effects of climate change on health and wellbeing in informal settlements by a team of 16 community health volunteers who lead data collection and provide expertise in ongoing analysis. Findings show profound impacts on women's health and wellbeing across individual, micro-, meso-, exo-, and macrosystems. These include physical and mental health, financial disruptions, property issues, social impacts, and impacts on their surrounding physical environment, such as disrupted food or water access, poor air quality, drainage issues, and safety concerns. In addition, findings highlight the critical importance of the chrono- and biosphere systems in research focused on the impacts of climate change and related EWEs among climate-vulnerable communities and marginalized populations within them.


Subject(s)
Climate Change , Extreme Weather , Kenya , Humans , Female , Adult , Middle Aged , Longitudinal Studies , Surveys and Questionnaires , Young Adult , Adolescent , Socioeconomic Factors
3.
Development ; 150(18)2023 09 15.
Article in English | MEDLINE | ID: mdl-37702007

ABSTRACT

A fundamental goal of developmental biology is to understand how cell and tissue fates are specified. The imaginal discs of Drosophila are excellent model systems for addressing this paradigm as their fate can be redirected when discs regenerate after injury or when key selector genes are misregulated. Here, we show that when Polycomb expression is reduced, the wing selector gene vestigial is ectopically activated. This leads to the inappropriate formation of the Vestigial-Scalloped complex, which forces the eye to transform into a wing. We further demonstrate that disrupting this complex does not simply block wing formation or restore eye development. Instead, immunohistochemistry and high-throughput genomic analysis show that the eye-antennal disc unexpectedly undergoes hyperplastic growth with multiple domains being organized into other imaginal discs and tissues. These findings provide insight into the complex developmental landscape that tissues must navigate before adopting their final fate.


Subject(s)
Drosophila Proteins , Imaginal Discs , Animals , Drosophila Proteins/genetics , Drosophila , Genomics , Hyperplasia , Polycomb-Group Proteins/genetics
4.
Cell Mol Life Sci ; 80(8): 232, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37500984

ABSTRACT

Members of the Bacteroidetes phylum in the human colon deploy an extensive number of proteins to capture and degrade polysaccharides. Operons devoted to glycan breakdown and uptake are termed polysaccharide utilization loci or PUL. The starch utilization system (Sus) is one such PUL and was initially described in Bacteroides thetaiotaomicron (Bt). BtSus is highly conserved across many species, except for its extracellular α-amylase, SusG. In this work, we show that the Bacteroides ovatus (Bo) extracellular α-amylase, BoGH13ASus, is distinguished from SusG in its evolutionary origin and its domain architecture and by being the most prevalent form in Bacteroidetes Sus. BoGH13ASus is the founding member of both a novel subfamily in the glycoside hydrolase family 13, GH13_47, and a novel carbohydrate-binding module, CBM98. The BoGH13ASus CBM98-CBM48-GH13_47 architecture differs from the CBM58 embedded within the GH13_36 of SusG. These domains adopt a distinct spatial orientation and invoke a different association with the outer membrane. The BoCBM98 binding site is required for Bo growth on polysaccharides and optimal enzymatic degradation thereof. Finally, the BoGH13ASus structure features bound Ca2+ and Mn2+ ions, the latter of which is novel for an α-amylase. Little is known about the impact of Mn2+ on gut bacterial function, much less on polysaccharide consumption, but Mn2+ addition to Bt expressing BoGH13ASus specifically enhances growth on starch. Further understanding of bacterial starch degradation signatures will enable more tailored prebiotic and pharmaceutical approaches that increase starch flux to the gut.


Subject(s)
Bacteroides , alpha-Amylases , Humans , Bacteroides/metabolism , Starch/metabolism , Polysaccharides/metabolism
5.
Methods Mol Biol ; 2657: 129-140, 2023.
Article in English | MEDLINE | ID: mdl-37149527

ABSTRACT

Isothermal titration calorimetry allows the determination of thermodynamic parameters for the interaction between a protein and mono- or oligosaccharides in solution. For the study of protein-carbohydrate interactions, it is a robust way to determine the stoichiometry and affinity, as well as the enthalpic and entropic contributions to this interaction, without the use of labeled proteins or substrates. Here we describe a standard multiple-injection titration experiment for measuring the binding energetics between a carbohydrate-binding protein and an oligosaccharide.


Subject(s)
Carbohydrates , Thermodynamics , Entropy , Calorimetry , Protein Binding
6.
bioRxiv ; 2023 May 09.
Article in English | MEDLINE | ID: mdl-37214810

ABSTRACT

Drosophila Robo3 is a member of the evolutionarily conserved Roundabout (Robo) receptor family and one of three Drosophila Robo paralogs. During embryonic ventral nerve cord development, Robo3 does not participate in canonical Slit-dependent midline repulsion, but instead regulates the formation of longitudinal axon pathways at specific positions along the medial-lateral axis. Longitudinal axon guidance by Robo3 is hypothesized to be Slit dependent, but this has not been directly tested. Here we create a series of Robo3 variants in which the N-terminal Ig1 domain is deleted or modified, in order to characterize the functional importance of Ig1 and Slit binding for Robo3's axon guidance activity. We show that Robo3 requires its Ig1 domain for interaction with Slit and for proper axonal localization in embryonic neurons, but deleting Ig1 from Robo3 only partially disrupts longitudinal pathway formation. Robo3 variants with modified Ig1 domains that cannot bind Slit retain proper localization and fully rescue longitudinal axon guidance. Our results indicate that Robo3 guides longitudinal axons independently of Slit, and that sequences both within and outside of Ig1 contribute to this Slit-independent activity.

7.
bioRxiv ; 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37090526

ABSTRACT

A fundamental goal of developmental biology is to understand how cell and tissue fates are specified. The imaginal discs of Drosophila are excellent model systems for addressing this paradigm as their fate can be redirected when discs regenerate after injury or when key selector genes are mis-regulated. Here, we show that when Polycomb expression is reduced, the wing selector gene vestigial is ectopically activated. This leads to the inappropriate formation of the Vestigial-Scalloped complex which forces the eye to transform into a wing. We further demonstrate that disrupting this complex does not simply block wing formation or restore eye development. Instead, immunohistochemistry and high throughput genomic analysis show that the eye-antennal disc unexpectedly undergoes hyperplastic growth with multiple domains being organized into other imaginal discs and tissues. These findings provide insight into the complex developmental landscape that tissues must navigate before adopting their final fate. Summary Statement: Here we describe a novel mechanism by which Pc promotes an eye fate during normal development and how the eye is reprogrammed into a wing in its absence.

8.
STAR Protoc ; 4(1): 101878, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36867537

ABSTRACT

Cleavage Under Targets & Release Using Nucleases (CUT&RUN) sequencing is a technique used to study gene regulation. The protocol presented here has been used successfully to identify the pattern of histone modifications within the genome of the eye-antennal disc of the fruit fly, Drosophila melanogaster. In its present form, it can be used to analyze genomic features of other imaginal discs. It can be modified for use with other tissues and applications including identifying the pattern of transcription factor occupancy.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Imaginal Discs/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Epigenesis, Genetic/genetics
9.
Biophys J ; 121(23): 4644-4655, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36266970

ABSTRACT

The gut microbiota comprises hundreds of species with a composition shaped by the available glycans. The well-studied starch utilization system (Sus) is a prototype for glycan uptake in the human gut bacterium Bacteroides thetaiotaomicron (Bt). Each Sus-like system includes outer-membrane proteins, which translocate glycan into the periplasm, and one or more cell-surface glycoside hydrolases, which break down a specific (cognate) polymer substrate. Although the molecular mechanisms of the Sus system are known, how the Sus and Sus-like proteins cooperate remains elusive. Previously, we used single-molecule and super-resolution fluorescence microscopy to show that SusG is mobile on the outer membrane and slows down in the presence of starch. Here, we compare the dynamics of three glycoside hydrolases: SusG, Bt4668, and Bt1760, which target starch, galactan, and levan, respectively. We characterized the diffusion of each surface hydrolase in the presence of its cognate glycan and found that all three enzymes are mostly immobile in the presence of the polysaccharide, consistent with carbohydrate binding. Moreover, experiments in glucose versus oligosaccharides suggest that the enzyme dynamics depend on their expression level. Furthermore, we characterized enzyme diffusion in a mixture of glycans and found that noncognate polysaccharides modify the dynamics of SusG and Bt1760 but not Bt4668. We investigated these systems with polysaccharide mixtures and genetic knockouts and found that noncognate polysaccharides modify hydrolase dynamics through some combination of nonspecific protein interactions and downregulation of the hydrolase. Overall, these experiments extend our understanding of how Sus-like lipoprotein dynamics can be modified by changing carbohydrate conditions and the expression level of the enzyme.


Subject(s)
Bacteroides , Lipoproteins , Humans , Polysaccharides , Starch , Hydrolases , Carbohydrates
10.
Lancet Gastroenterol Hepatol ; 7(3): 219-229, 2022 03.
Article in English | MEDLINE | ID: mdl-35065058

ABSTRACT

BACKGROUND: Surgical resection of early stage hepatocellular carcinoma is standard clinical practice; however, most tumours recur despite surgery, and no perioperative intervention has shown a survival benefit. Neoadjuvant immunotherapy has induced pathological responses in multiple tumour types and might decrease the risk of postoperative recurrence in hepatocellular carcinoma. We aimed to evaluate the clinical activity of neoadjuvant cemiplimab (an anti-PD-1) in patients with resectable hepatocellular carcinoma. METHODS: For this single-arm, open-label, phase 2 trial, patients with resectable hepatocellular carcinoma (stage Ib, II, and IIIb) were enrolled and received two cycles of neoadjuvant cemiplimab 350 mg intravenously every 3 weeks followed by surgical resection. Eligible patients were aged 18 years or older, had confirmed resectable hepatocellular carcinoma, an Eastern Cooperative Oncology Group performance status of 0 or 1, and adequate liver function. Patients were excluded if they had metastatic disease, if the surgery was not expected to be curative, if they had a known additional malignancy requiring active treatment, or if they required systemic steroid treatment or any other immunosuppressive therapy. After resection, patients received an additional eight cycles of cemiplimab 350 mg intravenously every 3 weeks in the adjuvant setting. The primary endpoint was significant tumour necrosis on pathological examination (defined as >70% necrosis of the resected tumour). Secondary endpoints included delay of surgery, the proportion of patients with an overall response, change in CD8+ T-cell density, and adverse events. Tumour necrosis and response were analysed in all patients who received at least one dose of cemiplimab and completed surgical resection; safety and other endpoints were analysed in the intention-to-treat population. Patients underwent pre-treatment biopsies and blood collection throughout treatment. This trial is registered with ClinicalTrials.gov (NCT03916627, Cohort B) and is ongoing. FINDINGS: Between Aug 5, 2019, and Nov 25, 2020, 21 patients were enrolled. All patients received neoadjuvant cemiplimab, and 20 patients underwent successful resection. Of the 20 patients with resected tumours, four (20%) had significant tumour necrosis. Three (15%) of 20 patients had a partial response, and all other patients maintained stable disease. 20 (95%) patients had a treatment-emergent adverse event of any grade during the neoadjuvant treatment period. The most common adverse events of any grade were increased aspartate aminotransferase (in four patients), increased blood creatine phosphokinase (in three), constipation (in three), and fatigue (in three). Seven patients had grade 3 adverse events, including increased blood creatine phosphokinase (in two patients) and hypoalbuminaemia (in one). No grade 4 or 5 events were observed. One patient developed pneumonitis, which led to a delay in surgery by 2 weeks. INTERPRETATION: This report is, to our knowledge, the largest clinical trial of a neoadjuvant anti-PD-1 monotherapy reported to date in hepatocellular carcinoma. The observed pathological responses to cemiplimab in this cohort support the design of larger trials to identify the optimal treatment duration and definitively establish the clinical benefit of preoperative PD-1 blockade in patients with hepatocellular carcinoma. FUNDING: Regeneron Pharmaceuticals.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Antineoplastic Agents, Immunological/administration & dosage , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized/adverse effects , Antineoplastic Agents, Immunological/adverse effects , Aspartate Aminotransferases/blood , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/surgery , Creatine Kinase/blood , Female , Humans , Liver Neoplasms/pathology , Liver Neoplasms/surgery , Male , Middle Aged , Neoadjuvant Therapy
11.
Biochemistry ; 60(27): 2206-2220, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34180241

ABSTRACT

The hyperthermophilic bacterium Caldicellulosiruptor kristjansonii encodes an unusual enzyme, CkXyn10C-GE15A, which incorporates two catalytic domains, a xylanase and a glucuronoyl esterase, and five carbohydrate-binding modules (CBMs) from families 9 and 22. The xylanase and glucuronoyl esterase catalytic domains were recently biochemically characterized, as was the ability of the individual CBMs to bind insoluble polysaccharides. Here, we further probed the abilities of the different CBMs from CkXyn10C-GE15A to bind to soluble poly- and oligosaccharides using affinity gel electrophoresis, isothermal titration calorimetry, and differential scanning fluorimetry. The results revealed additional binding properties of the proteins compared to the former studies on insoluble polysaccharides. Collectively, the results show that all five CBMs have their own distinct binding preferences and appear to complement each other and the catalytic domains in targeting complex cell wall polysaccharides. Additionally, through renewed efforts, we have achieved partial structural characterization of this complex multidomain protein. We have determined the structures of the third CBM9 domain (CBM9.3) and the glucuronoyl esterase (GE15A) by X-ray crystallography. CBM9.3 is the second CBM9 structure determined to date and was shown to bind oligosaccharide ligands at the same site but in a different binding mode compared to that of the previously determined CBM9 structure from Thermotoga maritima. GE15A represents a unique intermediate between reported fungal and bacterial glucuronoyl esterase structures as it lacks two inserted loop regions typical of bacterial enzymes and a third loop has an atypical structure. We also report small-angle X-ray scattering measurements of the N-terminal CBM22.1-CBM22.2-Xyn10C construct, indicating a compact arrangement at room temperature.


Subject(s)
Bacterial Proteins/chemistry , Caldicellulosiruptor/enzymology , Esterases/chemistry , Xylosidases/chemistry , Bacterial Proteins/metabolism , Binding Sites , Caldicellulosiruptor/chemistry , Caldicellulosiruptor/metabolism , Crystallography, X-Ray , Enzyme Stability , Esterases/metabolism , Models, Molecular , Oligosaccharides/metabolism , Polysaccharides/metabolism , Protein Conformation , Temperature , Xylosidases/metabolism
12.
J Struct Biol ; 213(3): 107765, 2021 09.
Article in English | MEDLINE | ID: mdl-34186214

ABSTRACT

Pullulanases are glycoside hydrolase family 13 (GH13) enzymes that target α1,6 glucosidic linkages within starch and aid in the degradation of the α1,4- and α1,6- linked glucans pullulan, glycogen and amylopectin. The human gut bacterium Ruminococcus bromii synthesizes two extracellular pullulanases, Amy10 and Amy12, that are incorporated into the multiprotein amylosome complex that enables the digestion of granular resistant starch from the diet. Here we provide a comparative biochemical analysis of these pullulanases and the x-ray crystal structures of the wild type and the nucleophile mutant D392A of Amy12 complexed with maltoheptaose and 63-α-D glucosyl-maltotriose. While Amy10 displays higher catalytic efficiency on pullulan and cleaves only α1,6 linkages, Amy12 has some activity on α1,4 linkages suggesting that these enzymes are not redundant within the amylosome. Our structures of Amy12 include a mucin-binding protein (MucBP) domain that follows the C-domain of the GH13 fold, an atypical feature of these enzymes. The wild type Amy12 structure with maltoheptaose captured two oligosaccharides in the active site arranged as expected following catalysis of an α1,6 branch point in amylopectin. The nucleophile mutant D392A complexed with maltoheptaose or 63-α-D glucosyl-maltotriose captured ß-glucose at the reducing end in the -1 subsite, facilitated by the truncation of the active site aspartate and stabilized by stacking with Y279. The core interface between the co-crystallized ligands and Amy12 occurs within the -2 through + 1 subsites, which may allow for flexible recognition of α1,6 linkages within a variety of starch structures.


Subject(s)
Glycoside Hydrolases , Ruminococcus , Glycoside Hydrolases/chemistry , Humans , Ruminococcus/genetics , Ruminococcus/metabolism , Starch/metabolism , Substrate Specificity
13.
Glycobiology ; 31(6): 697-706, 2021 06 29.
Article in English | MEDLINE | ID: mdl-32518945

ABSTRACT

The Bacteroidetes are numerically abundant Gram-negative organisms of the distal human gut with a greatly expanded capacity to degrade complex glycans. A subset of these are adept at scavenging host glycans within this environment, including mucin O-linked glycans, N-linked glycoproteins and highly sulfated glycosaminoglycans (GAGs) such as heparin (Hep) and chondroitin sulfate (CS). Several recent biochemical studies have revealed the specific polysaccharide utilization loci (PULs) within the model symbiont Bacteroides thetaiotaomicron for the deconstruction of these host glycans. Here we discuss the Sus-like paradigm that defines glycan uptake by the Bacteroidetes and the salient details of the PULs that target heparin/heparan sulfate (HS) and chondroitin sulfate/dermatan sulfate (DS)/hyaluronic acid (HA), respectively, in B. thetaiotaomicron. The ability of the Bacteroidetes to target highly sulfated host glycans is key to their success in the gut environment but can lead to inflammation in susceptible hosts. Therefore, our continued understanding of the molecular strategies employed by these bacteria to scavenge carbohydrate nutrition is likely to lead to novel ways to alter their metabolism to promote host health.


Subject(s)
Bacteroides thetaiotaomicron , Bacteroides , Bacteroides/metabolism , Bacteroidetes , Glycosaminoglycans/chemistry , Heparitin Sulfate/metabolism , Humans , Polysaccharides/metabolism
14.
PLoS One ; 15(10): e0241150, 2020.
Article in English | MEDLINE | ID: mdl-33091076

ABSTRACT

The Roundabout (Robo) family of axon guidance receptors has a conserved ectodomain arrangement of five immunoglobulin-like (Ig) domains plus three fibronectin type III (Fn) repeats. Based on the strong evolutionary conservation of this domain structure among Robo receptors, as well as in vitro structural and domain-domain interaction studies of Robo family members, this ectodomain arrangement is predicted to be important for Robo receptor signaling in response to Slit ligands. Here, we define the minimal ectodomain structure required for Slit binding and midline repulsive signaling in vivo by Drosophila Robo1. We find that the majority of the Robo1 ectodomain is dispensable for both Slit binding and repulsive signaling. We show that a significant level of midline repulsive signaling activity is retained when all Robo1 ectodomain elements apart from Ig1 are deleted, and that the combination of Ig1 plus one additional ectodomain element (Ig2, Ig5, or Fn3) is sufficient to restore midline repulsion to wild type levels. Further, we find that deleting four out of five Robo1 Ig domains (ΔIg2-5) does not affect negative regulation of Robo1 by Commissureless (Comm) or Robo2, while variants lacking all three fibronectin repeats (ΔFn1-3 and ΔIg2-Fn3) are insensitive to regulation by both Comm and Robo2, signifying a novel regulatory role for Robo1's Fn repeats. Our results provide an in vivo perspective on the importance of the conserved 5+3 ectodomain structure of Robo receptors, and suggest that specific biochemical properties and/or ectodomain structural conformations observed in vitro for domains other than Ig1 may have limited significance for in vivo signaling in the context of midline repulsion.


Subject(s)
Drosophila/metabolism , Nerve Tissue Proteins/metabolism , Receptors, Immunologic/metabolism , Signal Transduction , Animals , Binding Sites , Drosophila/cytology , Drosophila Proteins/analysis , Drosophila Proteins/metabolism , Nerve Tissue Proteins/analysis , Protein Binding , Protein Domains , Protein Interaction Maps , Receptors, Immunologic/analysis , Roundabout Proteins
16.
Health Psychol ; 39(10): 900-904, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32406725

ABSTRACT

OBJECTIVE: Using a daily monitoring framework, we examined the psychological consequences of Fitbit self-tracking on state body satisfaction, disordered eating (DE; i.e., binge eating and dietary restraint), levels of exercise engagement, and motivations (appearance vs. fitness/health) in adult women. A further aim within the Fitbit group was to assess whether the level of steps achieved on 1 day would be associated with the state-based outcome measures on the subsequent day. METHOD: In total, 262 participants who had never used a wearable fitness self-tracking device were allocated to a Fitbit (n = 101) or control condition (n = 161). Participants provided baseline data on sociodemographics, eating pathology, and exercise and then completed a 10-day Ecological Momentary Assessment (EMA) protocol assessing exercise amount and motives, body satisfaction, and DE symptoms via a mobile application. Those in the Fitbit condition wore a Fitbit over the entire assessment period. RESULTS: The use of a Fitbit over a 10-day period had no significant effects on exercise behavior or body satisfaction compared to a control group. However, those in the Fitbit group were more likely to exercise to reach fitness goals and less likely to engage in dietary restraint and binge-eating behavior. Among participants in the Fitbit condition, steps achieved the previous day were not predictive of exercise engagement, body satisfaction, or DE symptoms on the subsequent day. CONCLUSIONS: Our study failed to link fitness self-tracking to body dissatisfaction and DE, at least in the early stages of use. Future research directions regarding alternative pathways through which self-tracking devices may exert negative influences are discussed. (PsycInfo Database Record (c) 2020 APA, all rights reserved).


Subject(s)
Body Image/psychology , Feeding and Eating Disorders/psychology , Fitness Trackers/trends , Adult , Female , Humans , Young Adult
17.
Trends Microbiol ; 28(2): 95-108, 2020 02.
Article in English | MEDLINE | ID: mdl-31624005

ABSTRACT

Starch is a polymer of glucose and is one of the most abundant carbohydrates in a Western diet. Resistant starch escapes digestion by host small intestinal glucoamylases and transits the colon where it is degraded by the combined efforts of many gut bacteria. Bacterial metabolism and fermentation of resistant starch leads to increases in short-chain fatty acids, including the clinically beneficial butyrate. Here, we review the molecular machinery that gut bacteria use to degrade starch and how these functions may intersect to facilitate complete starch digestion. While the protein complexes that gut bacteria use to degrade starch differ across phyla, some molecular details converge to promote the optimal positioning of enzymes and substrate for starch degradation.


Subject(s)
Gastrointestinal Microbiome/physiology , Starch/metabolism , Animals , Butyrates/metabolism , Colon/metabolism , Fatty Acids, Volatile/metabolism , Host Microbial Interactions , Humans , Mice , Prebiotics
19.
Semin Cell Dev Biol ; 85: 13-25, 2019 01.
Article in English | MEDLINE | ID: mdl-29174915

ABSTRACT

Studies in the fruit fly Drosophila melanogaster have provided many fundamental insights into the genetic regulation of neural development, including the identification and characterization of evolutionarily conserved axon guidance pathways and their roles in important guidance decisions. Due to its highly organized and fast-developing embryonic nervous system, relatively small number of neurons, and molecular and genetic tools for identifying, labeling, and manipulating individual neurons or small neuronal subsets, studies of axon guidance in the Drosophila embryonic CNS have allowed researchers to dissect these genetic mechanisms with a high degree of precision. In this review, we discuss the major axon guidance pathways that regulate midline crossing of axons and the formation and guidance of longitudinal axon tracts, two processes that contribute to the development of the precise three-dimensional structure of the insect nerve cord. We focus particularly on recent insights into the roles and regulation of canonical midline axon guidance pathways, and on additional factors and pathways that have recently been shown to contribute to axon guidance decisions at and near the midline.


Subject(s)
Axon Guidance , Central Nervous System/cytology , Drosophila/cytology , Drosophila/embryology , Animals , Axons/metabolism , Central Nervous System/embryology
20.
Protein Sci ; 27(8): 1491-1497, 2018 08.
Article in English | MEDLINE | ID: mdl-29761597

ABSTRACT

Recent studies have demonstrated that the O-antigens of some pathogenic bacteria such as Brucella abortus, Francisella tularensis, and Campylobacter jejuni contain quite unusual N-formylated sugars (3-formamido-3,6-dideoxy-d-glucose or 4-formamido-4,6-dideoxy-d-glucose). Typically, four enzymes are required for the formation of such sugars: a thymidylyltransferase, a 4,6-dehydratase, a pyridoxal 5'-phosphate or PLP-dependent aminotransferase, and an N-formyltransferase. To date, there have been no published reports of N-formylated sugars associated with Mycobacterium tuberculosis. A recent investigation from our laboratories, however, has demonstrated that one gene product from M. tuberculosis, Rv3404c, functions as a sugar N-formyltransferase. Given that M. tuberculosis produces l-rhamnose, both a thymidylyltransferase (Rv0334) and a 4,6-dehydratase (Rv3464) required for its formation have been identified. Thus, there is one remaining enzyme needed for the production of an N-formylated sugar in M. tuberculosis, namely a PLP-dependent aminotransferase. Here we demonstrate that the M. tuberculosis rv3402c gene encodes such an enzyme. Our data prove that M. tuberculosis contains all of the enzymatic activities required for the formation of dTDP-4-formamido-4,6-dideoxy-d-glucose. Indeed, the rv3402c gene product likely contributes to virulence or persistence during infection, though its temporal expression and location remain to be determined.


Subject(s)
Glucosamine/biosynthesis , Glucosamine/metabolism , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbohydrate Conformation , Glucosamine/analogs & derivatives , Glucosamine/chemistry , Metabolic Networks and Pathways/genetics , Metabolic Networks and Pathways/physiology , Mutagenesis, Site-Directed , Mycobacterium tuberculosis/chemistry , Mycobacterium tuberculosis/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transaminases/chemistry , Transaminases/genetics , Transaminases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...