Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J Am Chem Soc ; 135(50): 18738-41, 2013 Dec 18.
Article in English | MEDLINE | ID: mdl-24308512

ABSTRACT

The zwitterionic ring-opening of 2,2,5,5-tetramethyl-2,5-disila-1-oxacyclopentane (TMOSC) with N-heterocyclic carbenes generates high molecular weight cyclic p(TMOSC). The NHC-mediated polymerization of TMOSC with 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (IMes, 1) generates the poly(carbosiloxane) p(TMOSC) with molecular weights from 27,000 < Mn < 80,000 Da (1.4 < Mw/Mn < 2.2) within 30 min at room temp. With the more nucleophilic carbene 1,3,4,5-tetramethyl-imidazol-2-ylidene (4), the ring-opening polymerization occurs within minutes at room temperature to generate cyclic p(TMOSC) with molecular weights up to Mn = 940,000 Da (Mw/Mn = 3.2). The resulting p(TMOSC)s are predominantly cyclic as evidenced by dilute solution viscosity studies and MALDI-TOF MS. DFT calculations provide support for both zwitterionic and neutral, cyclic intermediates.

2.
Acc Chem Res ; 46(11): 2585-96, 2013 Nov 19.
Article in English | MEDLINE | ID: mdl-23789724

ABSTRACT

Cyclic polymers are an intriguing class of macromolecules. Because of the constraints of the cyclic topology and the absence of chain ends, the properties of these molecules differ from those of linear polymers in ways that remain poorly understood. Cyclic polymers present formidable synthetic challenges because the entropic penalty of coupling the chain ends grows exponentially with increasing molecular weight. In this Account, we describe recent progress in the application of zwitterionic ring-opening polymerization (ZROP) as a strategy for the synthesis of high molecular weight, cyclic polymers. Zwitterionic ring-opening polymerization involves the addition of neutral organic nucleophiles to strained heterocyclic monomers; under appropriate conditions, cyclization of the resultant macrozwitterions generates cyclic macromolecules. We discuss the mechanistic and kinetic features of these zwitterionic ring-opening reactions and the conditions that influence the efficiency of the initiation, propagation, and cyclization to generate high molecular weight cyclic polymers. N-Heterocyclic carbenes (NHC) are potent nucleophiles and relatively poor leaving groups, two features that are important for the generation of high molecular weight polymers. Investigations of the nature of the monomer and nucleophile have helped researchers understand the factors that govern the reactivity of these systems and their impact on the molecular weight and molecular weight distributions of the resulting cyclic polymers. We focus primarily on ZROP mediated by N-heterocyclic carbene nucleophiles but also discuss zwitterionic polymerizations with amidine, pyridine, and imidazole nucleophiles. The ZROP of N-carboxyanhydrides with N-hetereocyclic carbenes generates a family of functionalized cyclic polypeptoids. We can synthesize gradient lactone copolymers by exploiting differences in relative reactivity present in ZROP that differ from those of traditional metal-mediated polymerizations. These new synthetic methods have allowed us to investigate the influence of topology on the crystallization behavior, stereocomplexation, and solution properties of cyclic macromolecules.

3.
ACS Macro Lett ; 1(9): 1113-1115, 2012 Sep 18.
Article in English | MEDLINE | ID: mdl-35607177

ABSTRACT

The ring-opening polymerization (ROP) of lactide with DBU (1,8-diazabicyclo[5.4.0] undec-7-ene) is described. Room temperature polymerization using the neutral amine catalyst DBU in the absence of any other initiator produces polymers with narrow polydispersities and shows a linear relationship between molecular weight and conversion. The resulting polymers were characterized and determined to be cyclic. DFT calculations support a mechanistic hypothesis involving a zwitterionic acyl amidinium intermediate.

4.
Synthesis (Stuttg) ; 2011(1): 57-64, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21709749

ABSTRACT

The HOPO sulfonamide reagent, 3, was prepared from commercial 2,3-dihydroxypyridine in four steps in good yields. Sulfonamide 3 readily underwent selective alkylation with dibromides in the presence of base or could be coupled to alcohols using Mitsunobu conditions. The utility of this nucleophilic HOPO reagent was demonstrated by the synthesis some tris and tetraHOPO chelators. This approach for tethering HOPO ligands is unique and flexible as shown by the preparation of HOPO/iminocarboxylic acid chelator 17.

SELECTION OF CITATIONS
SEARCH DETAIL