Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2698, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538595

ABSTRACT

Toxoplasma gondii is an obligate intracellular parasite of rodents and humans. Interferon-inducible guanylate binding proteins (GBPs) are mediators of T. gondii clearance, however, this mechanism is incomplete. Here, using automated spatially targeted optical micro proteomics we demonstrate that inducible nitric oxide synthetase (iNOS) is highly enriched at GBP2+ parasitophorous vacuoles (PV) in murine macrophages. iNOS expression in macrophages is necessary to limit T. gondii load in vivo and in vitro. Although iNOS activity is dispensable for GBP2 recruitment and PV membrane ruffling; parasites can replicate, egress and shed GBP2 when iNOS is inhibited. T. gondii clearance by iNOS requires nitric oxide, leading to nitration of the PV and collapse of the intravacuolar network of membranes in a chromosome 3 GBP-dependent manner. We conclude that reactive nitrogen species generated by iNOS cooperate with GBPs to target distinct structures in the PV that are necessary for optimal parasite clearance in macrophages.


Subject(s)
Toxoplasma , Vacuoles , Animals , Humans , Mice , Interferons/metabolism , Macrophages/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Toxoplasma/metabolism , Vacuoles/metabolism
2.
Contemp Clin Trials ; 137: 107416, 2024 02.
Article in English | MEDLINE | ID: mdl-38109966

ABSTRACT

BACKGROUND: The Advancing Inclusive Research (AIR) Site Alliance is composed of clinical research centers that partner with Genentech, a biotechnology company, to advance the representation of diverse patient populations in its oncology and ophthalmology clinical trials, test recruitment, and retention approaches and establish best practices to leverage across the industry to achieve health equity. METHODS: Through a data-driven selection process, Genentech identified 6 oncology and 3 ophthalmology partners that focus on reaching historically underrepresented patients in clinical trials and worked collaboratively to share knowledge and explore original ways of increasing clinical study access for every patient, including sites co-creation of a Protocol Entry Criteria Guideline with inclusion principles. RESULTS: For patients, three publicly available educational videos about clinical trials were created in multiple languages. The AIR Site Alliance has also defined invoiceable services for sites to enhance patient support; this has been built into the new study budget templates for sustainability. For healthcare professionals (HCPs), the first-of-its-kind AIR Educational Program was developed to focus on identifying and addressing bias and engaging historically underrepresented patient populations in trials. The sites also co-created videos for HCPs and patients on why advancing inclusive research matters. Over 16 regional health equity symposia have been delivered for patients, HCPs, and community leaders. CONCLUSIONS: This AIR Site Alliance is a model for other site alliances, including Kenya, South Africa, the United Kingdom, and Canada. Such alliances will build a robust and sustainable research ecosystem that includes diverse patient groups and encourages change across the healthcare system.


Subject(s)
Biomedical Research , Health Personnel , Humans , Canada , Kenya , Ophthalmology , Medical Oncology
3.
Life Sci ; 284: 119881, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34389403

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an infectious disease that has spread worldwide. Current treatments are limited in both availability and efficacy, such that improving our understanding of the factors that facilitate infection is urgently needed to more effectively treat infected individuals and to curb the pandemic. We and others have previously demonstrated the significance of interactions between the SARS-CoV-2 spike protein, integrin α5ß1, and human ACE2 to facilitate viral entry into host cells in vitro. We previously found that inhibition of integrin α5ß1 by the clinically validated small peptide ATN-161 inhibits these spike protein interactions and cell infection in vitro. In continuation with our previous findings, here we have further evaluated the therapeutic potential of ATN-161 on SARS-CoV-2 infection in k18-hACE2 transgenic (SARS-CoV-2 susceptible) mice in vivo. We discovered that treatment with single or repeated intravenous doses of ATN-161 (1 mg/kg) within 48 h after intranasal inoculation with SARS-CoV-2 lead to a reduction of lung viral load, viral immunofluorescence, and improved lung histology in a majority of mice 72 h post-infection. Furthermore, ATN-161 reduced SARS-CoV-2-induced increased expression of lung integrin α5 and αv (an α5-related integrin that has also been implicated in SARS-CoV-2 interactions) as well as the C-X-C motif chemokine ligand 10 (Cxcl10), further supporting the potential involvement of these integrins, and the anti-inflammatory potential of ATN-161, respectively, in SARS-CoV-2 infection. To the best of our knowledge, this is the first study demonstrating the potential therapeutic efficacy of targeting integrin α5ß1 in SARS-CoV-2 infection in vivo and supports the development of ATN-161 as a novel SARS-CoV-2 therapy.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19 Drug Treatment , COVID-19/prevention & control , Oligopeptides/therapeutic use , SARS-CoV-2/physiology , Alanine Transaminase/metabolism , Animals , Aspartate Aminotransferases/metabolism , COVID-19/virology , Genome, Viral , Humans , Integrins/metabolism , Liver/enzymology , Liver/pathology , Lung/pathology , Lung/virology , Male , Mice, Inbred C57BL , Mice, Transgenic , Oligopeptides/pharmacology , SARS-CoV-2/genetics , Staining and Labeling , Viral Load/genetics
4.
Cytokine Growth Factor Rev ; 58: 1-15, 2021 04.
Article in English | MEDLINE | ID: mdl-33674185

ABSTRACT

SARS-CoV-2 is a novel coronavirus that severely affects the respiratory system, is the cause of the COVID-19 pandemic, and is projected to result in the deaths of 2 million people worldwide. Recent reports suggest that SARS-CoV-2 also affects the central nervous system along with other organs. COVID-19-associated complications are observed in older people with underlying neurological conditions like stroke, Alzheimer's disease, and Parkinson's disease. Hence, we discuss SARS-CoV-2 viral replication and its inflammation-mediated infection. This review also focuses on COVID-19 associated neurological complications in individuals with those complications as well as other groups of people. Finally, we also briefly discuss the current therapies available to treat patients, as well as ongoing available treatments and vaccines for effective cures with a special focus on the therapeutic potential of a small 5 amino acid peptide (PHSCN), ATN-161, that inhibits SARS-CoV-2 spike protein binding to both integrin α5ß1 and α5ß1/hACE2.


Subject(s)
COVID-19/complications , Nervous System Diseases/virology , Neurogenic Inflammation/virology , SARS-CoV-2/pathogenicity , Age Factors , Aged , Aged, 80 and over , COVID-19/epidemiology , Humans , Nervous System Diseases/epidemiology , Neurogenic Inflammation/complications , Neuroimmunomodulation/physiology , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL
...