Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 50: 128320, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34400299

ABSTRACT

The atypical chemokine receptor C-X-C chemokine receptor type 7 (CXCR7) is an attractive therapeutic target for a variety of cardiac and immunological diseases. As a strategy to mitigate known risks associated with the development of higher molecular weight, basic compounds, a series of pyrrolidinyl-azolopyrazines were identified as promising small-molecule CXCR7 modulators. Using a highly enabled parallel medicinal chemistry strategy, structure-activity relationship studies geared towards a reduction in lipophilicity and incorporation of saturated heterocycles led to the identification of representative tool compound 20. Notably, compound 20 maintained good potency against CXCR7 with a suitable balance of physicochemical properties to support in vivo pharmacokinetic studies.


Subject(s)
Drug Discovery , Immunologic Factors/chemical synthesis , Immunologic Factors/pharmacology , Receptors, CXCR/antagonists & inhibitors , Animals , Drug Delivery Systems , Drug Design , Immunologic Factors/pharmacokinetics , Male , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Structure , Signal Transduction , Structure-Activity Relationship
2.
ACS Med Chem Lett ; 11(6): 1330-1334, 2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32551020

ABSTRACT

The atypical chemokine receptor CXCR7 has been studied in various disease settings including immunological diseases and heart disease. Efforts to elucidate the role of CXCR7 have been limited by the lack of suitable chemical tools with a range of pharmacological profiles. A high-throughput screen was conducted to discover novel chemical matter with the potential to modulate CXCR7 receptor activity. This led to the identification of a series of diphenylacetamides confirmed in a CXCL12 competition assay indicating receptor binding. Further evaluation of this series revealed a lack of activity in the functional assay measuring ß-arrestin recruitment. The most potent representative, compound 10 (K i = 597 nM), was determined to be an antagonist in the ß-arrestin assay (IC50 = 622 nM). To our knowledge, this is the first reported small molecule ß-arrestin antagonist for CXCR7, useful as an in vitro chemical tool to elucidate the effects of CXCL12 displacement with ß-arrestin antagonism in models for diseases such as cardiac injury and suitable as starting point for hit optimization directed toward an in vivo tool compound for studying CXCR7 receptor pharmacology.

3.
J Med Chem ; 61(16): 7273-7288, 2018 08 23.
Article in English | MEDLINE | ID: mdl-30036059

ABSTRACT

Studies on indole-3-carboxylic acid derivatives as direct activators of human adenosine monophosphate-activated protein kinase (AMPK) α1ß1γ1 isoform have culminated in the identification of PF-06409577 (1), PF-06885249 (2), and PF-06679142 (3) as potential clinical candidates. Compounds 1-3 are primarily cleared in animals and humans via glucuronidation. Herein, we describe the biosynthetic preparation, purification, and structural characterization of the glucuronide conjugates of 1-3. Spectral characterization of the purified glucuronides M1, M2, and M3 indicated that they were acyl glucuronide derivatives. In vitro pharmacological evaluation revealed that all three acyl glucuronides retained selective activation of ß1-containing AMPK isoforms. Inhibition of de novo lipogenesis with representative parent carboxylic acids and their respective acyl glucuronide conjugates in human hepatocytes demonstrated their propensity to activate cellular AMPK. Cocrystallization of the AMPK α1ß1γ1 isoform with 1-3 and M1-M3 provided molecular insights into the structural basis for AMPK activation by the glucuronide conjugates.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Indoles/chemistry , Indoles/metabolism , Lipogenesis/drug effects , AMP-Activated Protein Kinases/chemistry , Animals , Cells, Cultured , Crystallization/methods , Enzyme Activation/drug effects , Glucuronides/chemistry , Glucuronides/metabolism , Glucuronides/pharmacokinetics , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Indoles/pharmacology , Macaca fascicularis , Magnetic Resonance Spectroscopy , Male , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Rats, Wistar , Uridine Diphosphate Glucuronic Acid/pharmacology
4.
ACS Med Chem Lett ; 9(5): 440-445, 2018 May 10.
Article in English | MEDLINE | ID: mdl-29795756

ABSTRACT

Sodium-phosphate cotransporter 2a, or NaPi2a (SLC34A1), is a solute-carrier (SLC) transporter located in the kidney proximal tubule that reabsorbs glomerular-filtered phosphate. Inhibition of NaPi2a may enhance urinary phosphate excretion and correct maladaptive mineral and hormonal derangements associated with increased cardiovascular risk in chronic kidney disease-mineral and bone disorder (CKD-MBD). To date, only nonselective NaPi inhibitors have been described. Herein, we detail the discovery of the first series of selective NaPi2a inhibitors, resulting from optimization of a high-throughput screening hit. The oral PK profile of inhibitor PF-06869206 (6f) in rodents allows for the exploration of the pharmacology of selective NaPi2a inhibition.

5.
J Med Chem ; 61(8): 3685-3696, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29627981

ABSTRACT

C-X-C chemokine receptor type 7 (CXCR7) is involved in cardiac and immune pathophysiology. We report the discovery of a novel 1,4-diazepine CXCR7 modulator, demonstrating for the first time the role of pharmacological CXCR7 intervention in cardiac repair. Structure-activity-relationship (SAR) studies demonstrated that a net reduction in lipophilicity (log D) and an incorporation of saturated ring systems yielded compounds with good CXCR7 potencies and improvements in oxidative metabolic stability in human-liver microsomes (HLM). Tethering an ethylene amide further improved the selectivity profile (e.g., for compound 18, CXCR7 Ki = 13 nM, adrenergic α 1a Kb > 10 000 nM, and adrenergic ß 2 Kb > 10 000 nM). The subcutaneous administration of 18 in mice led to a statistically significant increase in circulating concentrations of plasma stromal-cell-derived factor 1α (SDF-1α) of approximately 2-fold. Chronic dosing of compound 18 in a mouse model of isoproterenol-induced cardiac injury further resulted in a statistically significant reduction of cardiac fibrosis.


Subject(s)
Acetamides/therapeutic use , Azepines/therapeutic use , Cardiotonic Agents/therapeutic use , Fibrosis/drug therapy , Heart Diseases/drug therapy , Receptors, CXCR/metabolism , Acetamides/chemical synthesis , Acetamides/chemistry , Acetamides/pharmacology , Animals , Azepines/chemical synthesis , Azepines/chemistry , Azepines/pharmacology , Cardiotonic Agents/chemical synthesis , Cardiotonic Agents/chemistry , Cardiotonic Agents/pharmacology , Dogs , Fibrosis/chemically induced , Heart Diseases/chemically induced , Humans , Hydrophobic and Hydrophilic Interactions , Isoproterenol , Madin Darby Canine Kidney Cells , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Microsomes, Liver/metabolism , Molecular Structure , Structure-Activity Relationship
6.
J Med Chem ; 61(6): 2372-2383, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29466005

ABSTRACT

Optimization of the pharmacokinetic (PK) properties of a series of activators of adenosine monophosphate-activated protein kinase (AMPK) is described. Derivatives of the previously described 5-aryl-indole-3-carboxylic acid clinical candidate (1) were examined with the goal of reducing glucuronidation rate and minimizing renal excretion. Compounds 10 (PF-06679142) and 14 (PF-06685249) exhibited robust activation of AMPK in rat kidneys as well as desirable oral absorption, low plasma clearance, and negligible renal clearance in preclinical species. A correlation of in vivo renal clearance in rats with in vitro uptake by human and rat renal organic anion transporters (human OAT/rat Oat) was identified. Variation of polar functional groups was critical to mitigate active renal clearance mediated by the Oat3 transporter. Modification of either the 6-chloroindole core to a 4,6-difluoroindole or the 5-phenyl substituent to a substituted 5-(3-pyridyl) group provided improved metabolic stability while minimizing propensity for active transport by OAT3.


Subject(s)
AMP-Activated Protein Kinases/drug effects , Enzyme Activators/chemical synthesis , Enzyme Activators/pharmacology , Indoles/chemical synthesis , Indoles/pharmacology , Animals , Enzyme Activation/drug effects , Enzyme Activators/pharmacokinetics , Humans , Indoles/pharmacokinetics , Intestinal Absorption , Kidney/drug effects , Kidney/enzymology , Male , Models, Molecular , Organic Anion Transporters, Sodium-Independent/metabolism , Rats , Rats, Wistar , Structure-Activity Relationship
7.
J Med Chem ; 60(23): 9653-9663, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29045152

ABSTRACT

The chemokine receptor CXCR7 is an attractive target for a variety of diseases. While several small-molecule modulators of CXCR7 have been reported, peptidic macrocycles may provide advantages in terms of potency, selectivity, and reduced off-target activity. We produced a series of peptidic macrocycles that incorporate an N-linked peptoid functionality where the peptoid group enabled us to explore side-chain diversity well beyond that of natural amino acids. At the same time, theoretical calculations and experimental assays were used to track and reduce the polarity while closely monitoring the physicochemical properties. This strategy led to the discovery of macrocyclic peptide-peptoid hybrids with high CXCR7 binding affinities (Ki < 100 nM) and measurable passive permeability (Papp > 5 × 10-6 cm/s). Moreover, bioactive peptide 25 (Ki = 9 nM) achieved oral bioavailability of 18% in rats, which was commensurate with the observed plasma clearance values upon intravenous administration.


Subject(s)
Peptides/chemistry , Peptides/pharmacology , Peptoids/chemistry , Peptoids/pharmacology , Receptors, CXCR/agonists , Receptors, CXCR/metabolism , Administration, Oral , Animals , Biological Availability , Dogs , Humans , Macrocyclic Compounds/administration & dosage , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacokinetics , Macrocyclic Compounds/pharmacology , Madin Darby Canine Kidney Cells , Male , Molecular Docking Simulation , Peptides/administration & dosage , Peptides/pharmacokinetics , Peptoids/administration & dosage , Peptoids/pharmacokinetics , Rats , Rats, Wistar
8.
J Med Chem ; 59(17): 8068-81, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27490827

ABSTRACT

Adenosine monophosphate-activated protein kinase (AMPK) is a protein kinase involved in maintaining energy homeostasis within cells. On the basis of human genetic association data, AMPK activators were pursued for the treatment of diabetic nephropathy. Identification of an indazole amide high throughput screening (HTS) hit followed by truncation to its minimal pharmacophore provided an indazole acid lead compound. Optimization of the core and aryl appendage improved oral absorption and culminated in the identification of indole acid, PF-06409577 (7). Compound 7 was advanced to first-in-human trials for the treatment of diabetic nephropathy.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Diabetic Nephropathies/drug therapy , Enzyme Activators/chemistry , Indoles/chemistry , Administration, Oral , Adsorption , Animals , Crystallography, X-Ray , Dogs , Enzyme Activators/chemical synthesis , Enzyme Activators/pharmacokinetics , Enzyme Activators/pharmacology , High-Throughput Screening Assays , Humans , Indazoles/chemical synthesis , Indazoles/chemistry , Indazoles/pharmacology , Indoles/chemical synthesis , Indoles/pharmacokinetics , Indoles/pharmacology , Injections, Intravenous , Macaca fascicularis , Male , Models, Molecular , Protein Conformation , Rats
9.
Drug Metab Dispos ; 44(10): 1633-42, 2016 10.
Article in English | MEDLINE | ID: mdl-27417179

ABSTRACT

Unbound partition coefficient (Kpuu) is important to an understanding of the asymmetric free drug distribution of a compound between cells and medium in vitro, as well as between tissue and plasma in vivo, especially for transporter-mediated processes. Kpuu was determined for a set of compounds from the SLC13A family that are inhibitors and substrates of transporters in hepatocytes and transporter-transfected cell lines. Enantioselectivity was observed, with (R)-enantiomers achieving much higher Kpuu (>4) than the (S)-enantiomers (<1) in human hepatocytes and SLC13A5-transfected human embryonic 293 cells. The intracellular free drug concentration correlated directly with in vitro pharmacological activity rather than the nominal concentration in the assay because of the high Kpuu mediated by SLC13A5 transporter uptake. Delivery of the diacid PF-06649298 directly or via hydrolysis of the ethyl ester prodrug PF-06757303 resulted in quite different Kpuu values in human hepatocytes (Kpuu of 3 for diacid versus 59 for prodrug), which was successfully modeled on the basis of passive diffusion, active uptake, and conversion rate from ester to diacid using a compartmental model. Kpuu values changed with drug concentrations; lower values were observed at higher concentrations possibly owing to a saturation of transporters. Michaelis-Menten constant (Km) of SLC13A5 was estimated to be 24 µM for PF-06649298 in human hepatocytes. In vitro Kpuu obtained from rat suspension hepatocytes supplemented with 4% fatty acid free bovine serum albumin showed good correlation with in vivo Kpuu of liver-to-plasma, illustrating the potential of this approach to predict in vivo Kpuu from in vitro systems.


Subject(s)
Cation Transport Proteins/metabolism , Symporters/metabolism , Animals , Chromatography, Liquid , Culture Media/metabolism , HEK293 Cells , Hepatocytes/metabolism , Humans , In Vitro Techniques , Rats , Sodium Sulfate Cotransporter , Tandem Mass Spectrometry
10.
Bioorg Med Chem Lett ; 21(6): 1621-5, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21324691

ABSTRACT

A potent, small molecule inhibitor with a favorable pharmacokinetic profile to allow for sustained SCD inhibition in vivo was identified. Starting from a low MW acyl guanidine (5a), identified with a RapidFire High-Throughput Mass Spectrometry (RF-MS) assay, iterative library design was used to rapidly probe the amide and tail regions of the molecule. Singleton synthesis was used to probe core changes. Biological evaluation of a SCD inhibitor (5b) included in vitro potency at SCD-1 and in vivo modulation of the plasma desaturation index (DI) in rats on a low essential fatty acid (LEFA) diet. In addition to dose-dependent decrease in DI, effects on rodent ocular tissue were noted. Therefore, in rat, these SCD inhibitors only recapitulate a portion of phenotype exhibited by the SCD-1 knockout mouse.


Subject(s)
Enzyme Inhibitors/pharmacology , Imidazoles/pharmacology , Stearoyl-CoA Desaturase/antagonists & inhibitors , Administration, Oral , Enzyme Inhibitors/administration & dosage , Imidazoles/administration & dosage , Mass Spectrometry
12.
J Biomol Screen ; 14(4): 360-70, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19403919

ABSTRACT

Novel fluorescent derivatives of serotonin have been synthesized and used as tracers for the development of a 5-HT2C fluorescence polarization assay. Serotonin analogs that feature a fluorescent probe attached through an ether linkage at the tryptamine 5-position have high affinity for the 5-HT2C receptor, and affinity is dependent on both linker length and pendent dye. These variables have been optimized to generate Cy3B derivative 5a, which has 10-fold higher 5-HT2C affinity relative to serotonin (Kd=0.23 nM). In receptor activation experiments, 5a acts as a full agonist of 5-HT2C. Upon binding to 5-HT2C cell membranes, 5a shows a robust increase in fluorescence polarization (FP) signal. In an FP binding assay using 5a as a tracer ligand, Ki values for known 5-HT2C agonists and antagonists showed excellent agreement with Ki values from radioligand binding (r2=0.93). The FP ligand assay is suitable for high-throughput drug screening applications with respect to speed of analysis, displaceable signal, precision, and sensitivity to various reagents. A 384-well-based high-throughput assay that is rapid, economical, and predictive of test compounds' ability to bind to the 5-HT2C receptor has been compiled and validated.


Subject(s)
Drug Design , Fluorescent Dyes/metabolism , Receptor, Serotonin, 5-HT2C/analysis , Serotonin/analogs & derivatives , Staining and Labeling , Animals , Biological Assay , Fluorescence Polarization , Humans , Kinetics , Mice , NIH 3T3 Cells , Receptor, Serotonin, 5-HT2C/metabolism , Reference Standards , Reproducibility of Results , Structure-Activity Relationship
13.
Eur J Pharmacol ; 451(1): 37-41, 2002 Sep 06.
Article in English | MEDLINE | ID: mdl-12223226

ABSTRACT

We evaluated the in vitro pharmacological profile of a novel, potent and highly selective Na(+)/H(+) exchanger-1 (NHE-1) inhibitor, [1-(Quinolin-5-yl)-5-cyclopropyl-1H-pyrazole-4-carbonyl]guanidine hydrochloride monohydrate (zoniporide or CP-597,396). The potency and selectivity of zoniporide were determined via inhibition of 22Na(+) uptake by PS-120 fibroblast cell lines overexpressing human NHE-1, -2 or rat NHE-3. Additionally, potency for endogenous NHE-1 was confirmed via ex vivo human platelet swelling assay (PSA), in which platelet swelling was induced by exposure to sodium propionate. The pharmacological profile of zoniporide was compared with that of eniporide and cariporide. Zoniporide inhibited 22Na(+) uptake in fibroblasts expressing human NHE-1 in a concentration-dependent manner (IC(50) = 14 nM) and was highly selective (157-fold and 15,700-fold vs. human NHE-2 and rat NHE-3, respectively). Zoniporide was 1.64- to 2.6-fold more potent at human NHE-1 than either eniporide or cariporide (IC(50) = 23 and 36 nM, respectively). Zoniporide was also more selective at inhibiting human NHE-1 vs. human NHE-2 than either eniporide or cariporide (157-fold selective compared with 27- and 49-fold, respectively). All three compounds inhibited human platelet swelling with IC(50) values in low nanomolar range. From these results, we conclude that zoniporide represents a novel, potent and highly selective NHE-1 inhibitor.


Subject(s)
Guanidines/pharmacology , Pyrazoles/pharmacology , Sodium-Hydrogen Exchangers/antagonists & inhibitors , Cells, Cultured , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Sodium/metabolism , Sulfones/pharmacology
14.
J Pharmacol Toxicol Methods ; 47(3): 137-41, 2002.
Article in English | MEDLINE | ID: mdl-12628304

ABSTRACT

INTRODUCTION: Poly(ADP-ribose) polymerase (PARP) plays a pivotal role in the repair of DNA strand breaks. However, excessive activation of PARP causes a rapid depletion of intracellular energy, leading to cell death. Inhibitors of PARP have been shown to reduce infarct size in animal models of myocardial ischemia. PARP inhibitors may have potential therapeutic benefit in the treatment of myocardial ischemia, stroke, head trauma, and neurodegenerative disease, and as an adjunct therapy with chemotherapeutic agents/radiation in cancer therapy. METHODS: Assays reported in the literature and commercially available PARP assay kits are labor-intensive, use radioactive reagents, use antibodies, and are not readily amenable to high throughput screening (HTS) [corrected]. Here we report the development and the validation of a nonradioactive PARP assay suitable for HTS. This is a biotinylated NAD-based colorimetric assay in a 96-well plate format. RESULTS: The assay is sensitive, reproducible, and easy to use. The IC(50) values generated for the known PARP inhibitors are in agreement with those generated using the commercial radioactive kit and those reported in the literature. DISCUSSION: The present study demonstrates a sensitive and reproducible methodology capable of screening human PARP inhibitors in high-throughput format.


Subject(s)
Enzyme Inhibitors , Mass Screening/methods , Poly(ADP-ribose) Polymerases/analysis , ADP-Ribosylation Factors/metabolism , Benzamides/pharmacology , Biotinylation , Dose-Response Relationship, Drug , Electron Spin Resonance Spectroscopy/methods , Enzyme Inhibitors/pharmacology , Ethers/pharmacology , Humans , Hydrocarbons, Fluorinated/pharmacology , Inhibitory Concentration 50 , NAD/metabolism , Poly(ADP-ribose) Polymerase Inhibitors , Quinazolines/pharmacology , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...