Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
PLoS One ; 18(8): e0281569, 2023.
Article in English | MEDLINE | ID: mdl-37651425

ABSTRACT

This study was designed to test the idea that the regulatory regions of human genes have evolved to be resistant to the effects of mutations in their primary function, the control of gene expression. It is proposed that the transcription factor/transcription factor binding site (TF/TFBS) pair having the greatest effect on control of a gene is the one with the highest abundance among the regulatory elements. Other pairs would have the same effect on gene expression and would predominate in the event of a mutation in the most abundant pair. It is expected that the overall regulatory design proposed here will be highly resistant to mutagenic change that would otherwise affect expression of the gene. The idea was tested beginning with a database of 42 human genes highly specific for expression in brain. For each gene, the five most abundant TF/TFBS pairs were identified and compared in their TFBS occupancy as measured by their ChIP-seq signal. A similar signal was observed and interpreted as evidence that the TF/TFBS pairs can substitute for one another. TF/TFBS pairs were also compared in their ability to substitute for one another in their effect on the level of gene expression. The study of brain specific genes was complemented with the same analysis performed with 31 human liver specific genes. Like the study of brain genes, the liver results supported the view that TF/TFBS pairs in liver specific genes can substitute for one another in the event of mutagenic damage. Finally, the TFBSs in the brain specific and liver specific gene populations were compared with each other with the goal of identifying any brain selective or liver selective TFBSs. Of the 89 TFBSs in the pooled population, 58 were found only in brain specific but not liver specific genes, 8 only in liver specific but not brain specific genes and 23 were found in both brain and liver specific genes. The results were interpreted to emphasize the large number of TFBS in brain specific genes.


Subject(s)
Brain , Gene Expression Regulation , Promoter Regions, Genetic , Transcription Factors , Humans , Binding Sites , Transcription Factors/metabolism , Mutation , Promoter Regions, Genetic/genetics , Databases, Genetic , Brain/metabolism , Liver/metabolism
2.
Int J Genomics ; 2021: 8902428, 2021.
Article in English | MEDLINE | ID: mdl-33688492

ABSTRACT

This study was carried out to pursue the observation that the level of gene expression is affected by gene length in the human genome. As transcription is a time-dependent process, it is expected that gene expression will be inversely related to gene length, and this is found to be the case. Here, I describe the results of studies performed to test whether the gene length/gene expression linkage is affected by two factors, the chromosome where the gene is located and the tissue where it is expressed. Studies were performed with a database of 3538 human genes that were divided into short, midlength, and long groups. Chromosome groups were then compared in the expression level of genes with the same length. A similar analysis was performed with 19 human tissues. Tissue-specific groups were compared in the expression level of genes with the same length. Both chromosome and tissue studies revealed new information about the role of gene length in control of gene expression. Chromosome studies led to the identification of two chromosome populations that differ in the expression level of short genes. A high level of expression was observed in chromosomes 2-10, 12-15, and 18 and a low level in 1, 11, 16-17, 19-20, 22, and 24. Studies with tissue-specific genes led to the identification of two tissues, brain and liver, which differ in the expression level of short genes. The results are interpreted to support the view that the level of a gene's expression can be affected by the chromosome and the tissue where the gene is transcribed.

3.
Heliyon ; 6(9): e04934, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32995621

ABSTRACT

The study described here was undertaken to extend the observation that some transcription factors can either stimulate or suppress gene expression depending on the local environment of their DNA binding site. It is suggested that if such transcription factors also had a mechanism to sense the expression level of the gene they control, then they could create a feedback loop able to keep expression of a gene within a limited range. The transcription factor would be activating if gene expression were determined to be too low and repressing if it were too high. To test the above idea, I have examined the effect of gene expression on the ability of the transcription factor binding areas, the promoter/enhancers, to stimulate or attenuate gene expression depending on the existing expression level of a gene. Studies were carried out with a population of 61 human genes expressed selectively in liver. A similar study was carried out with thyroid genes. The total length of all promoter/enhancers in each gene sequence was determined and compared in weakly and strongly expressed genes. The results showed that the level of expression was stimulated by promoter/enhancers in weakly expressed genes and antagonized in strongly expressed ones. The results are interpreted to indicate that promoter/enhancers act to keep expression of a gene within a defined range that is appropriate for the gene's function.

4.
PLoS One ; 14(9): e0215184, 2019.
Article in English | MEDLINE | ID: mdl-31514204

ABSTRACT

BACKGROUND: As a result of decades of effort by many investigators we now have an advanced level of understanding about several molecular systems involved in the control of gene expression. Examples include CpG islands, promoters, mRNA splicing and epigenetic signals. It is less clear, however, how such systems work together to integrate the functions of a living organism. Here I describe the results of a study to test the idea that a contribution might be made by focusing on genes specifically expressed in a particular tissue, the human testis. EXPERIMENTAL DESIGN: A database of 239 testis-specific genes was accumulated and each was examined for the presence of features relevant to control of gene expression. These include: (1) the presence of a promoter, (2) the presence of a CpG island (CGI) within the promoter, (3) the presence in the promoter of a transcription factor binding site near the transcription start site, (4) the level of gene expression, and (5) the above features in genes of testis-specific cell types such as spermatocyte and spermatid that differ in their extent of differentiation. RESULTS: Of the 107 database genes with an annotated promoter, 56 were found to have one or more transcription factor binding sites near the transcription start site. Three of the binding sites observed, Pax-5, AP-2αA and GRα, stand out in abundance suggesting they may be involved in testis-specific gene expression. Compared to less differentiated testis-specific cells, genes of more differentiated cells were found to be (1) more likely to lack a CGI, (2) more likely to lack introns and (3) higher in expression level. The results suggest genes of more differentiated cells have a reduced need for CGI-based regulatory repression, reduced usage of gene splicing and a smaller set of expressed proteins.


Subject(s)
Gene Expression Regulation , Testis/metabolism , Binding Sites , Cell Differentiation/genetics , Computational Biology/methods , CpG Islands , Databases, Genetic , Gene Expression Profiling , Humans , Male , Molecular Sequence Annotation , Organ Specificity/genetics , Promoter Regions, Genetic , Protein Binding , Stem Cells/cytology , Stem Cells/metabolism , Testis/cytology , Transcription Factors/metabolism
5.
PLoS One ; 13(8): e0202927, 2018.
Article in English | MEDLINE | ID: mdl-30138429

ABSTRACT

BACKGROUND: DNA sequence elements in the core promoter can play a central role in regulation of gene expression. Core elements (e.g. INR and TATA box) are located within ~50bp of the transcription start site and both upstream and downstream elements are known. Although all can affect the level of gene expression, their mechanism of action has yet to be fully defined. The studies described here are focused on two core promoter elements, INR and BRE, in the human genome. The locations of the two elements were determined in a large number of human promoters and the results were interpreted in terms of overall promoter function. RESULTS: A total of 13,406 promoters were collected from the reference version of the human genome and found to contain 62,891 INR sequences and 32,290 BRE. An INR sequence was found in the core region of 1231 (9.2%) promoters and a BRE in 2592 (19.3%); 121 promoters (0.9%) have both INR and BRE elements. Counts support the view that most human promoters lack an INR or BRE element in the core promoter. Further analysis was carried out with the aligned aggregate of promoters from each chromosome. The results showed distinct INR distributions in separate chromosome groups indicating a degree of chromosome specificity to the way core promoter elements are deployed in the genome. The rare promoters with both INR and BRE elements were found to be enriched among the genes with divergent transcription. Enrichment raises the possibility that core promoter elements can have a function in chromosome organization as well as in initiation of transcription.


Subject(s)
Gene Expression Regulation , Promoter Regions, Genetic , Databases, Genetic , Genome, Human , Humans , Transcription, Genetic
6.
Drug Metab Dispos ; 45(5): 556-568, 2017 05.
Article in English | MEDLINE | ID: mdl-28270564

ABSTRACT

In vitro-in vivo extrapolation of drug metabolism data obtained in enriched preparations of subcellular fractions rely on robust estimates of physiologically relevant scaling factors for the prediction of clearance in vivo. The purpose of the current study was to measure the microsomal and cytosolic protein per gram of kidney (MPPGK and CPPGK) in dog and human kidney cortex using appropriate protein recovery marker and evaluate functional activity of human cortex microsomes. Cytochrome P450 (CYP) content and glucose-6-phosphatase (G6Pase) activity were used as microsomal protein markers, whereas glutathione-S-transferase activity was a cytosolic marker. Functional activity of human microsomal samples was assessed by measuring mycophenolic acid glucuronidation. MPPGK was 33.9 and 44.0 mg/g in dog kidney cortex, and 41.1 and 63.6 mg/g in dog liver (n = 17), using P450 content and G6Pase activity, respectively. No trends were noted between kidney, liver, and intestinal scalars from the same animals. Species differences were evident, as human MPPGK and CPPGK were 26.2 and 53.3 mg/g in kidney cortex (n = 38), respectively. MPPGK was 2-fold greater than the commonly used in vitro-in vivo extrapolation scalar; this difference was attributed mainly to tissue source (mixed kidney regions versus cortex). Robust human MPPGK and CPPGK scalars were measured for the first time. The work emphasized the importance of regional differences (cortex versus whole kidney-specific MPPGK, tissue weight, and blood flow) and a need to account for these to improve assessment of renal metabolic clearance and its extrapolation to in vivo.


Subject(s)
Cytosol/metabolism , Kidney Cortex/metabolism , Microsomes/metabolism , Animals , Cytochrome P-450 Enzyme System/metabolism , Cytosol/chemistry , Dogs , Female , Glucose-6-Phosphatase/metabolism , Humans , Kidney Cortex/chemistry , Male , Microsomes/chemistry , Species Specificity
7.
Adv Virol ; 2017: 7028194, 2017.
Article in English | MEDLINE | ID: mdl-28255301

ABSTRACT

Like all herpesviruses, herpes simplex virus 1 (HSV1) is able to produce lytic or latent infections depending on the host cell type. Lytic infections occur in a broad range of cells while latency is highly specific for neurons. Although latency suggests itself as an attractive target for novel anti-HSV1 therapies, progress in their development has been slowed due in part to a lack of agreement about the basic biochemical mechanisms involved. Among the possibilities being considered is a pathway in which DNA repair mechanisms play a central role. Repair is suggested to be involved in both HSV1 entry into latency and reactivation from it. Here I describe the basic features of the DNA repair-centered pathway and discuss some of the experimental evidence supporting it. The pathway is particularly attractive because it is able to account for important features of the latent response, including the specificity for neurons, the specificity for neurons of the peripheral compared to the central nervous system, the high rate of genetic recombination in HSV1-infected cells, and the genetic identity of infecting and reactivated virus.

8.
Genomics ; 104(4): 287-94, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25173572

ABSTRACT

In cells latently infected with a herpesvirus, the viral DNA is present in the cell nucleus, but it is not extensively replicated or transcribed. In this suppressed state the virus DNA is vulnerable to mutagenic events that affect the host cell and have the potential to destroy the virus' genetic integrity. Despite the potential for genetic damage, however, herpesvirus sequences are well conserved after reactivation from latency. To account for this apparent paradox, I have tested the idea that host cell-encoded mechanisms of DNA repair are able to control genetic damage to latent herpesviruses. Studies were focused on homologous recombination-dependent DNA repair (HR). Methods of DNA sequence analysis were employed to scan herpesvirus genomes for DNA features able to activate HR. Analyses were carried out with a total of 39 herpesvirus DNA sequences, a group that included viruses from the alpha-, beta- and gamma-subfamilies. The results showed that all 39 genome sequences were enriched in two or more of the eight recombination-initiating features examined. The results were interpreted to indicate that HR can stabilize latent herpesvirus genomes. The results also showed, unexpectedly, that repair-initiating DNA features differed in alpha- compared to gamma-herpesviruses. Whereas inverted and tandem repeats predominated in alpha-herpesviruses, gamma-herpesviruses were enriched in short, GC-rich initiation sequences such as CCCAG and depleted in repeats. In alpha-herpesviruses, repair-initiating repeat sequences were found to be concentrated in a specific region (the S segment) of the genome while repair-initiating short sequences were distributed more uniformly in gamma-herpesviruses. The results suggest that repair pathways are activated differently in alpha- compared to gamma-herpesviruses.


Subject(s)
Herpesviridae/genetics , Recombinational DNA Repair , GC Rich Sequence , Genome, Viral , Herpesviridae/pathogenicity , Inverted Repeat Sequences , Microsatellite Repeats , Virulence/genetics
9.
Med Hypotheses ; 81(1): 62-7, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23643704

ABSTRACT

A growing number of reports indicate the frequent presence of DNA sequences and gene products of human cytomegalovirus in various tumors as compared to adjacent normal tissues, the brain tumors being studied most intensely. The mechanisms underlying the tropism of human cytomegalovirus to the tumor cells or to the cells of tumor origin, as well as the role of the host's genetic background in virus-associated oncogenesis are not well understood. It is also not clear why cytomegalovirus can be detected in many but not in all tumor specimens. Our in silico prediction results indicate that microRNA-34a may be involved in replication of some human DNA viruses by targeting and downregulating the genes encoding a diverse group of proteins, such as platelet-derived growth factor receptor-alpha, complement component receptor 2, herpes simplex virus entry mediators A, B, and C, and CD46. Notably, while their functions vary, these surface molecules have one feature in common: they serve as cellular entry receptors for human DNA viruses (cytomegalovirus, Epstein-Barr virus, human herpes virus 6, herpes simplex viruses 1 and 2, and adenoviruses) that are either proven or suspected to be linked with malignancies. MicroRNA-34a is strictly dependent on its transcriptional activator tumor suppressor protein p53, and both p53 and microRNA-34a are frequently mutated or downregulated in various cancers. We hypothesize that p53-microRNA-34a axis may alter susceptibility of cells to infection with some viruses that are detected in tumors and either proven or suspected to be associated with tumor initiation and progression.


Subject(s)
Cell Fusion , Endocytosis , Herpesviridae/physiology , MicroRNAs/physiology , Tumor Suppressor Protein p53/physiology , Humans
10.
J Virol ; 86(21): 11931-4, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22915822

ABSTRACT

Herpes simplex virus 1 (HSV-1) was shown to contain catalase, an enzyme able to detoxify hydrogen peroxide by converting it to water and oxygen. Studies with a catalase inhibitor indicated that virus-associated catalase can have a role in protecting the virus from oxidative inactivation. HSV-1 was found to be more sensitive to killing by hydrogen peroxide in the presence of a catalase inhibitor than in its absence. The results suggest a protective role for catalase during the time HSV-1 spends in the oxidizing environment outside a host cell.


Subject(s)
Catalase/metabolism , Disinfectants/metabolism , Disinfectants/toxicity , Herpesvirus 1, Human/drug effects , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/toxicity , Viral Proteins/metabolism , Animals , Chlorocebus aethiops , Enzyme Inhibitors/metabolism , Microbial Viability/drug effects , Oxygen/metabolism , Vero Cells , Viral Load , Virus Inactivation/drug effects , Water/metabolism
11.
Virology ; 431(1-2): 71-9, 2012.
Article in English | MEDLINE | ID: mdl-22695308

ABSTRACT

Initiation of infection by herpes family viruses involves a step in which most of the virus tegument becomes detached from the capsid. Detachment takes place in the host cell cytosol near the virus entry site and it is followed by dispersal of tegument proteins and disappearance of the tegument as a distinct entity. Here we describe the results of experiments designed to test the idea that the reducing environment of the cytosol may contribute to tegument detachment and disassembly. Non-ionic detergent was used to remove the membrane of purified herpes simplex virus under control and reducing conditions. The effects on the tegument were then examined by SDS-PAGE and electron microscopy. Protein analysis demonstrated that most major tegument proteins were removed under both oxidizing and reducing conditions except for UL49 which required a reducing environment. It is proposed therefore that the reducing conditions in the cytosol are involved in removal of UL49 protein. Electron microscopic analysis revealed that capsids produced under oxidizing conditions contained a coating of protein that was absent in reduced virions and which correlated uniquely with the presence of UL49. This capsid-associated layer is suggested to be the location of UL49 in the extracted virion.


Subject(s)
Capsid/metabolism , Cytosol/chemistry , Herpesviridae/physiology , Viral Structural Proteins/metabolism , Virus Internalization , Electrophoresis, Polyacrylamide Gel , Herpesviridae/ultrastructure , Microscopy, Electron , Oxidation-Reduction
12.
J Virol ; 86(13): 7084-97, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22532674

ABSTRACT

In the final stages of the herpes simplex virus 1 (HSV-1) life cycle, a viral nucleocapsid buds into a vesicle of trans-Golgi network (TGN)/endosome origin, acquiring an envelope and an outer vesicular membrane. The virus-containing vesicle then traffics to the plasma membrane where it fuses, exposing a mature virion. Although the process of directed egress has been studied in polarized epithelial cell lines, less work has been done in nonpolarized cell types. In this report, we describe a study of HSV-1 egress as it occurs in nonpolarized cells. The examination of infected Vero cells by electron, confocal, and total internal reflection fluorescence (TIRF) microscopy revealed that HSV-1 was released at specific pocket-like areas of the plasma membrane that were found along the substrate-adherent surface and cell-cell-adherent contacts. Both the membrane composition and cytoskeletal structure of egress sites were found to be modified by infection. The plasma membrane at virion release sites was heavily enriched in viral glycoproteins. Small glycoprotein patches formed early in infection, and virus became associated with these areas as they expanded. Glycoprotein-rich areas formed independently from virion trafficking as confirmed by the use of a UL25 mutant with a defect in capsid nuclear egress. The depolymerization of the cytoskeleton indicated that microtubules were important for the trafficking of virions and glycoproteins to release sites. In addition, the actin cytoskeleton was found to be necessary for maintaining the integrity of egress sites. When actin was depolymerized, the glycoprotein concentrations dispersed across the membrane, as did the surface-associated virus. Lastly, viral glycoprotein E appeared to function in a different manner in nonpolarized cells compared to previous studies of egress in polarized epithelial cells; the total amount of virus released at egress sites was slightly increased in infected Vero cells when gE was absent. However, gE was important for egress site formation, as Vero cells infected with gE deletion mutants formed glycoprotein patches that were significantly reduced in size. The results of this study are interpreted to indicate that the egress of HSV-1 in Vero cells is directed to virally induced, specialized egress sites that form along specific areas of the cell membrane.


Subject(s)
Cell Membrane/virology , Herpesvirus 1, Human/physiology , Host-Pathogen Interactions , Virus Release , Animals , Chlorocebus aethiops , Cytoskeleton/metabolism , Glycoproteins/metabolism , Herpesvirus 1, Human/growth & development , Microscopy, Confocal , Microscopy, Electron , Microscopy, Fluorescence , Vero Cells , Viral Proteins/metabolism
13.
J Virol ; 86(8): 4058-64, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22345483

ABSTRACT

Herpesviruses have an icosahedral nucleocapsid surrounded by an amorphous tegument and a lipoprotein envelope. The tegument comprises at least 20 proteins destined for delivery into the host cell. As the tegument does not have a regular structure, the question arises of how its proteins are recruited. The herpes simplex virus 1 (HSV-1) tegument is known to contact the capsid at its vertices, and two proteins, UL36 and UL37, have been identified as candidates for this interaction. We show that the interaction is mediated exclusively by UL36. HSV-1 nucleocapsids extracted from virions shed their UL37 upon incubation at 37°C. Cryo-electron microscopy (cryo-EM) analysis of capsids with and without UL37 reveals the same penton-capping density in both cases. As no other tegument proteins are retained in significant amounts, it follows that this density feature (∼100 kDa) represents the ordered portion of UL36 (336 kDa). It binds between neighboring UL19 protrusions and to an adjacent UL17 molecule. These observations support the hypothesis that UL36 plays a major role in the tegumentation of the virion, providing a flexible scaffold to which other tegument proteins, including UL37, bind. They also indicate how sequential conformational changes in the maturing nucleocapsid control the ordered binding, first of UL25/UL17 and then of UL36.


Subject(s)
Capsid Proteins/chemistry , Herpesvirus 1, Human/chemistry , Viral Proteins/chemistry , Binding Sites , Capsid Proteins/metabolism , Herpesvirus 1, Human/metabolism , Herpesvirus 1, Human/ultrastructure , Models, Molecular , Nucleocapsid/chemistry , Nucleocapsid/ultrastructure , Viral Proteins/metabolism , Virion/chemistry
14.
J Virol Antivir Res ; 1(2)2012 Oct 30.
Article in English | MEDLINE | ID: mdl-24392458

ABSTRACT

Coatomer protein I (COPI) is well known as the protein coat surrounding vesicles involved in returning endoplasmic reticulum (ER)-resident proteins to the ER. COPI coats are also found in vesicles involved in other trafficking processes including endocytosis, autophagy and anterograde transport in the secretory pathway. In view of the diverse functions of COPI proteins, it is expected that they will affect virus replication, and many reports of such COPI involvement have now appeared. The experimental approaches most often employ specific siRNA to deplete COPI subunits or brefeldin A to block COPI activation. Here we briefly describe the results obtained with viruses in which COPI is found to have a role in replication. The results demonstrate that COPI affects viruses quite differently with effects observed in processes such as entry, RNA replication, and intracellular transport of viral proteins.

15.
Curr Opin Virol ; 1(2): 142-9, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21927635

ABSTRACT

In all herpesviruses, the capsid is icosahedral in shape, composed of 162 capsomers, and assembled in the infected cell nucleus. Once a closed capsid has formed, it is packaged with the virus DNA and transported to the cytoplasm where further morphogenetic events take place. Herpesvirus capsid populations are highly uniform in shape, and this property has made them attractive for structural analysis particularly by cryo electron microscopy followed by three-dimensional image reconstruction. Here we describe what is known about herpesvirus capsid structure and assembly with emphasis on herpes simplex virus and on the contribution of structural studies. The overall analysis has demonstrated that herpesvirus capsids are formed by a pathway resembling that established for dsDNA bacteriophage such as P22 and HK97. For example herpes capsid assembly is found to: (1) involve a scaffolding protein not present in the mature virus; (2) proceed through a fragile, spherical procapsid intermediate; and (3) result in incorporation of a portal complex at a unique capsid vertex.


Subject(s)
Capsid/chemistry , Capsid/metabolism , Herpes Simplex/virology , Herpesvirus 1, Human/physiology , Virus Assembly , Animals , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Herpesvirus 1, Human/chemistry , Herpesvirus 1, Human/genetics , Humans
16.
J Neurooncol ; 105(3): 451-66, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21720806

ABSTRACT

While some avian retroviruses have been shown to induce gliomas in animal models, human herpesviruses, specifically, the most extensively studied cytomegalovirus, and the much less studied roseolovirus HHV-6, and Herpes simplex viruses 1 and 2, currently attract more and more attention as possible contributing or initiating factors in the development of human brain tumors. The aim of this review is to summarize and highlight the most provoking findings indicating a potential causative link between brain tumors, specifically malignant gliomas, and viruses in the context of the concepts of viral oncomodulation and the tumor stem cell origin.


Subject(s)
Brain Neoplasms/virology , Cell Transformation, Viral/physiology , Neoplastic Stem Cells/virology , Retroviridae/physiology , Tumor Virus Infections/complications , Animals , Humans
17.
J Virol ; 84(18): 9408-14, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20631146

ABSTRACT

The tegument of all herpesviruses contains a high-molecular-weight protein homologous to herpes simplex virus (HSV) UL36. This large (3,164 amino acids), essential, and multifunctional polypeptide is located on the capsid surface and present at 100 to 150 copies per virion. We have been testing the idea that UL36 is important for the structural organization of the tegument. UL36 is proposed to bind directly to the capsid with other tegument proteins bound indirectly by way of UL36. Here we report the results of studies carried out with HSV type 1-derived structures containing the capsid but lacking a membrane and depleted of all tegument proteins except UL36 and a second high-molecular-weight protein, UL37. Electron microscopic analysis demonstrated that, compared to capsids lacking a tegument, these capsids (called T36 capsids) had tufts of protein located at the vertices. Projecting from the tufts were thin, variably curved strands with lengths (15 to 70 nm) in some cases sufficient to extend across the entire thickness of the tegument (approximately 50 nm). Strands were sensitive to removal from the capsid by brief sonication, which also removed UL36 and UL37. The findings are interpreted to indicate that UL36 and UL37 are the components of the tufts and of the thin strands that extend from them. The strand lengths support the view that they could serve as organizing features for the tegument, as they have the potential to reach all parts of the tegument. The variably curved structure of the strands suggests they may be flexible, a property that could contribute to the deformable nature of the tegument.


Subject(s)
Capsid/ultrastructure , Herpesvirus 1, Human/physiology , Viral Proteins/metabolism , Virus Assembly , Animals , Chlorocebus aethiops , Herpesvirus 1, Human/ultrastructure , Microscopy, Electron, Transmission , Vero Cells , Viral Structural Proteins/metabolism
18.
Int J Environ Res Public Health ; 7(5): 2177-90, 2010 05.
Article in English | MEDLINE | ID: mdl-20623018

ABSTRACT

Mapping medical knowledge into a relational database became possible with the availability of personal computers and user-friendly database software in the early 1990s. To create a database of medical knowledge, the domain expert works like a mapmaker to first outline the domain and then add the details, starting with the most prominent features. The resulting "intelligent database" can support the decisions of healthcare professionals. The intelligent database described in this article contains profiles of 275 infectious diseases. Users can query the database for all diseases matching one or more specific criteria (symptom, endemic region of the world, or epidemiological factor). Epidemiological factors include sources (patients, water, soil, or animals), routes of entry, and insect vectors. Medical and public health professionals could use such a database as a decision-support software tool.


Subject(s)
Communicable Diseases , Database Management Systems , Information Storage and Retrieval , Diagnosis, Differential , Humans
19.
Br J Haematol ; 150(1): 88-92, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20456353

ABSTRACT

Fanconi anaemia (FA) is a recessive genetic disorder characterized by bone marrow failure, birth defects and cancer. Cells from FA patients are particularly defective in removing DNA interstrand crosslinks. We have developed a working chromatography purification scheme for FANCD2, a pivotal player in the FA DNA repair pathway, to facilitate identification of FANCD2 interacting partners. In doing so, at least three distinct FANCD2 subcomplexes were found to be present, designated as large, middle, and small complexes. The small complex is composed of tetramer of FANCD2 polypeptides, which may be the building block for other FANCD2 subcomplexes.


Subject(s)
Fanconi Anemia Complementation Group D2 Protein/isolation & purification , Fanconi Anemia/metabolism , Chromatography, Gel/methods , Fanconi Anemia Complementation Group D2 Protein/metabolism , Fanconi Anemia Complementation Group D2 Protein/ultrastructure , HeLa Cells , Humans , Microscopy, Electron
20.
J Mol Biol ; 397(2): 575-86, 2010 Mar 26.
Article in English | MEDLINE | ID: mdl-20109467

ABSTRACT

The herpes simplex virus type 1 UL25 protein is one of seven viral proteins that are required for DNA cleavage and packaging. Together with UL17, UL25 forms part of an elongated molecule referred to as the C-capsid-specific component (CCSC). Five copies of the CCSC are located at each of the capsid vertices on DNA-containing capsids. To study the conformation of UL25 as it is folded on the capsid surface, we identified the sequence recognized by a UL25-specific monoclonal antibody and localized the epitope on the capsid surface by immunogold electron microscopy. The epitope mapped to amino acids 99-111 adjacent to the region of the protein (amino acids 1-50) that is required for capsid binding. In addition, cryo-EM reconstructions of C-capsids in which the green fluorescent protein (GFP) was fused within the N-terminus of UL25 localized the point of contact between UL25 and GFP. The result confirmed the modeled location of the UL25 protein in the CCSC density as the region that is distal to the penton with the N-terminus of UL25 making contact with the triplex one removed from the penton. Immunofluorescence experiments at early times during infection demonstrated that UL25-GFP was present on capsids located within the cytoplasm and adjacent to the nucleus. These results support the view that UL25 is present on incoming capsids with the capsid-binding domain of UL25 located on the surface of the mature DNA-containing capsid.


Subject(s)
Capsid Proteins/analysis , Capsid Proteins/chemistry , Capsid/chemistry , Herpesvirus 1, Human/chemistry , Protein Folding , Antibodies, Monoclonal/metabolism , Antibodies, Viral/metabolism , Cryoelectron Microscopy , Epitope Mapping , Image Processing, Computer-Assisted , Microscopy, Immunoelectron , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...