Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Article in English | MEDLINE | ID: mdl-36535702

ABSTRACT

INTRODUCTION: This study aimed to assess data relevancy and data quality of the Innovation in Medical Evidence Development and Surveillance System Distributed Database (IMEDS-DD) for diabetes research and to evaluate comparability of its type 2 diabetes cohort to the general type 2 diabetes population. RESEARCH DESIGN AND METHODS: A retrospective study was conducted using the IMEDS-DD. Eligible members were adults with a medical encounter between April 1, 2018 and March 31, 2019 (index period). Type 2 diabetes and co-existing conditions were determined using all data available from April 1, 2016 to the most recent encounter within the index period. Type 2 diabetes patient characteristics, comorbidities and hemoglobin A1c (HbA1c) values were summarized and compared with those reported in national benchmarks and literature. RESULTS: Type 2 diabetes prevalence was 12.6% in the IMEDS-DD. Of 4 14 672 patients with type 2 diabetes, 52.8% were male, and the mean age was 65.0 (SD 13.3) years. Common comorbidities included hypertension (84.5%), hyperlipidemia (82.8%), obesity (45.3%), and cardiovascular disease (44.7%). Moderate-to-severe chronic kidney disease was observed in 20.2% patients. The most commonly used antihyperglycemic agents included metformin (35.7%), sulfonylureas (14.8%), and insulin (9.9%). Less than one-half (48.9%) had an HbA1c value recorded. These findings demonstrated the notable similarity in patient characteristics between type 2 diabetes populations identified within the IMEDS-DD and other large databases. CONCLUSIONS: Despite the limitations related to HbA1c data, our findings indicate that the IMEDS-DD contains robust information on key data elements to conduct pharmacoepidemiological studies in diabetes, including member demographic and clinical characteristics and health services utilization.


Subject(s)
Diabetes Mellitus, Type 2 , Metformin , Adult , Humans , Male , Aged , Female , Diabetes Mellitus, Type 2/epidemiology , Retrospective Studies , Hypoglycemic Agents , Insulin
2.
Anal Chem ; 94(10): 4141-4145, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35234449

ABSTRACT

Mass spectrometry (MS) allows for automated analysis of complex samples at high resolution without the need for labeling/derivatization. Liquid atmospheric pressure matrix-assisted laser desorption/ionization (LAP-MALDI) enables rapid sample preparation and MS analysis using microtiter-plate formats and high-performing mass spectrometers. We present a step change in high-speed, large-scale MS sample analysis of peptides at 20 samples/s and an enzymatic assay at 40 samples/s, i.e., an order of magnitude faster than current MS platforms. LAP-MALDI requires only low amounts of sample volume (<2 µL), of which only a fraction (<1%) is typically consumed, and allows for multiplexing and high-speed MS/MS analysis, demonstrated at ∼10 samples/s. Its high ion signal stability and similarity to electrospray ionization enables CVs below 10% and the analysis of multiply charged peptide ions at these extreme speeds. LAP-MALDI MS fulfills the speed requirements for large-scale population diagnostics and compound screening with the potential of analyzing >1 million samples per day.


Subject(s)
Atmospheric Pressure , Tandem Mass Spectrometry , Ions , Lasers , Peptides/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
3.
NPJ Digit Med ; 4(1): 170, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34931012

ABSTRACT

The Sentinel System is a major component of the United States Food and Drug Administration's (FDA) approach to active medical product safety surveillance. While Sentinel has historically relied on large quantities of health insurance claims data, leveraging longitudinal electronic health records (EHRs) that contain more detailed clinical information, as structured and unstructured features, may address some of the current gaps in capabilities. We identify key challenges when using EHR data to investigate medical product safety in a scalable and accelerated way, outline potential solutions, and describe the Sentinel Innovation Center's initiatives to put solutions into practice by expanding and strengthening the existing system with a query-ready, large-scale data infrastructure of linked EHR and claims data. We describe our initiatives in four strategic priority areas: (1) data infrastructure, (2) feature engineering, (3) causal inference, and (4) detection analytics, with the goal of incorporating emerging data science innovations to maximize the utility of EHR data for medical product safety surveillance.

4.
Analyst ; 146(22): 6861-6873, 2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34632987

ABSTRACT

We describe the implementation of a simple three-electrode surface-induced dissociation (SID) cell on a cyclic ion mobility spectrometer (cIMS) and demonstrate the utility of multipass mobility separations for resolving multiple conformations of protein complexes generated during collision-induced and surface-induced unfolding (CIU & SIU) experiments. In addition to CIU and SIU, SID of protein complexes is readily accomplished within the native instrument software and with no additional external power supplies by entering a single SID collision energy, a simplification in user experience compared to prior implementations. A set of cyclic homomeric protein complexes and a heterohexamer with known CID and SID behavior were analyzed to investigate mass and mobility resolution improvements, the latter of which improved by 20-50% (median: 33%) compared to a linear travelling wave device. Multiple passes of intact complexes, or their SID fragments, increased the mobility resolution by an average of 15% per pass, with the racetrack effect being observed after ∼3 or 4 passes, depending on the drift time spread of the analytes. Even with modest improvements to apparent mobility resolving power, multipass experiments were particularly useful for separating conformations produced from CIU and SIU experiments. We illustrate several examples where either (1) multipass experiments revealed multiple overlapping conformations previously unobserved or obscured due to limited mobility resolution, or (2) CIU or SIU conformations that appeared 'native' in a single pass experiment were actually slightly compacted or expanded, with the change only being measurable through multipass experiments. The work conducted here, the first utilization of multipass cyclic ion mobility for CIU, SIU, and SID of protein assemblies and a demonstration of a wholly integrated SIU/SID workflow, paves the way for widespread adoption of SID technology for native mass spectrometry and also improves our understanding of gas-phase protein complex CIU and SIU conformationomes.


Subject(s)
Proteins , Software , Mass Spectrometry
5.
J Am Soc Mass Spectrom ; 32(8): 2092-2098, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-33750126

ABSTRACT

Electron-transfer dissociation is an important technique capable of probing the primary and higher order structure of a wide variety of biomolecules and yielding information that is often inaccessible using other common MS methods. The source of the electron used to initiate the fragmentation event is a radical anion, and the fragmentation process therefore depends intimately on the electronic properties of both the reagent and analyte ions. A good reagent must ionize easily and be sufficiently robust to survive transport to the reaction location, but must also be capable of donating an electron to analyte cations efficiently enough to overcome competition with other ion-ion reaction channels. Inspired by the work of Gunawardena et al. ( J. Am. Chem. Soc. 2005, 127, 12627), an in silico workflow to allow prescreening of potential electron-transfer reagents for use in glow-discharge sources is described. Approximately 150 candidate molecules have been characterized using this workflow. We discuss in detail the properties of a selected subset of singly and doubly substituted benzenes and introduce five effective new reagents that have been identified as a result of this work.

6.
Rapid Commun Mass Spectrom ; 35 Suppl 1: e8246, 2021 Jan.
Article in English | MEDLINE | ID: mdl-30067883

ABSTRACT

RATIONALE: Liquid atmospheric pressure matrix-assisted laser desorption/ionisation (AP-MALDI) has been shown to enable the production of electrospray ionisation (ESI)-like multiply charged analyte ions with little sample consumption and long-lasting, robust ion yield for sensitive analysis by mass spectrometry (MS). Previous reports have focused on positive ion production. Here, we report an initial optimisation of liquid AP-MALDI for ESI-like negative ion production and its application to the analysis of peptides/proteins, DNA and lipids. METHODS: The instrumentation employed for this study is identical to that of earlier liquid AP-MALDI MS studies for positive analyte ion production with a simple non-commercial AP ion source that is attached to a Waters Synapt G2-Si mass spectrometer and incorporates a heated ion transfer tube. The preparation of liquid MALDI matrices is similar to positive ion mode analysis but has been adjusted for negative ion mode by changing the chromophore to 3-aminoquinoline and 9-aminoacridine for further improvements. RESULTS: For DNA, liquid AP-MALDI MS analysis benefited from switching to 9-aminoacridine-based MALDI samples and the negative ion mode, increasing the number of charges by up to a factor of 2 and the analyte ion signal intensities by more than 10-fold compared with the positive ion mode. The limit of detection was recorded at around 10 fmol for ATGCAT. For lipids, negative ion mode analysis provided a fully orthogonal set of detected lipids. CONCLUSIONS: Negative ion mode is a sensitive alternative to positive ion mode in liquid AP-MALDI MS analysis. In particular, the analysis of lipids and DNA benefited from the complementarity of the detected lipid species and the vastly greater DNA ion signal intensities in negative ion mode.

7.
J Am Soc Mass Spectrom ; 31(11): 2313-2320, 2020 Nov 04.
Article in English | MEDLINE | ID: mdl-32959654

ABSTRACT

Ultraviolet photodissociation (UVPD) has emerged as a useful technique for characterizing peptide, protein, and protein complex primary and secondary structure. 193 nm UVPD, specifically, enables extensive covalent fragmentation of the peptide backbone without the requirement of a specific side chain chromophore and with no precursor charge state dependence. We have modified a commercial quadrupole-ion mobility-time-of-flight (Q-IM-TOF) mass spectrometer to include 193 nm UVPD following ion mobility. Ion mobility (IM) is a gas-phase separation technique that enables separation of ions by their size, shape, and charge, providing an orthogonal dimension of separation to mass analysis. Following instrument modifications, we characterized the performance of, and information that could be generated from, this new setup using the model peptides substance P, melittin, and insulin chain B. These experiments show extensive fragmentation across the peptide backbone and a variety of ion types as expected from 193 nm UVPD. Additionally, y-2 ions (along with complementary a+2 and b+2 ions) N-terminal to proline were observed. Combining the IM separation and mobility gating capabilities with UVPD, we demonstrate the ability to accomplish both mass- and mobility-selection of bradykinin des-Arg9 and des-Arg1 peptides followed by complete sequence characterization by UVPD. The new capabilities of this modified instrument demonstrate the utility of combining IM with UVPD because isobaric species cannot be independently selected with a traditional quadrupole alone.


Subject(s)
Peptides/chemistry , Amino Acid Sequence , Ions/chemistry , Mass Spectrometry , Photolysis , Protein Structure, Secondary , Ultraviolet Rays
8.
Anal Chem ; 92(5): 3674-3681, 2020 03 03.
Article in English | MEDLINE | ID: mdl-31999103

ABSTRACT

Electron-based fragmentation methods have revolutionized biomolecular mass spectrometry, in particular native and top-down protein analysis. Here, we report the use of a new electromagnetostatic cell to perform electron capture dissociation (ECD) within a quadrupole/ion mobility/time-of-flight mass spectrometer. This cell was installed between the ion mobility and time-of-flight regions of the instrument, and fragmentation was fast enough to be compatible with mobility separation. The instrument was already fitted with electron transfer dissociation (ETD) between the quadrupole and mobility regions prior to modification. We show excellent fragmentation efficiency for denatured peptides and proteins without the need to trap ions in the gas phase. Additionally, we demonstrate native top-down backbone fragmentation of noncovalent protein complexes, leading to comparable sequence coverage to what was achieved using the instrument's existing ETD capabilities. Limited collisional ion activation of the hemoglobin tetramer before ECD was reflected in the observed fragmentation pattern, and complementary ion mobility measurements prior to ECD provided orthogonal evidence of monomer unfolding within this complex. The approach demonstrated here provides a powerful platform for both top-down proteomics and mass spectrometry-based structural biology studies.


Subject(s)
Mass Spectrometry/methods , Protein Denaturation , Proteins/chemistry , Amino Acid Sequence , Animals , Cattle , Humans , Models, Molecular , Protein Multimerization , Protein Structure, Quaternary
9.
Anal Chem ; 92(4): 2931-2936, 2020 02 18.
Article in English | MEDLINE | ID: mdl-31967792

ABSTRACT

Label-free high-throughput screening using mass spectrometry has the potential to provide rapid large-scale sample analysis at a speed of more than one sample per second. Such speed is important for compound library, assay and future clinical screening of millions of samples within a reasonable time frame. Herein, we present a liquid atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI) setup for high-throughput large-scale sample analysis (>5 samples per second) for three substance classes (peptides, antibiotics, and lipids). Liquid support matrices (LSM) were used for the analysis of standard substances as well as complex biological fluids (milk). Throughput and analytical robustness were mainly dependent on the complexity of the sample composition and the current limitations of the commercial hardware. However, the ultimate limits of liquid AP-MALDI in sample throughput can be conservatively estimated to be beyond 10-20 samples per second. This level of analytical speed is highly competitive compared with other label-free MS methods, including electrospray ionization and solid state MALDI, as well as MS methods using multiplexing by labeling, which in principle can also be used in combination with liquid AP-MALDI MS.

10.
J Phys Chem Lett ; 10(9): 2300-2305, 2019 May 02.
Article in English | MEDLINE | ID: mdl-30999749

ABSTRACT

Understanding optical properties of molecular dyes is required to drive progress in molecular photonics. This requires a fundamental comprehension of the role of electronic structure, geometry, and interactions with the environment in order to guide molecular engineering strategies. In this context, we studied charged cyanine dye molecules in the gas phase with a controlled microenvironment to unravel the origin of the spectral tuning of this class of molecules. This was performed using a new approach combining femtosecond multiple-photon action spectroscopy of on-the-fly mass-selected molecular ions and high-level quantum calculations. While arguments based on molecular geometry are often used to design new polymethine dyes, we provide experimental evidence that electronic structure is of primary importance and hence the decisive criterion as suggested by recent theoretical investigations.

11.
J Orthop Res ; 37(4): 812-820, 2019 04.
Article in English | MEDLINE | ID: mdl-30790359

ABSTRACT

Fractures typically heal via endochondral and intramembranous bone formation, which together form a callus that achieves union and biomechanical recovery. PTHrP, a PTH receptor agonist, plays an important physiological role in fracture healing as an endogenous stimulator of endochondral and intramembranous bone formation. Abaloparatide, a novel systemically-administered osteoanabolic PTH receptor agonist that reduces fracture risk in women with postmenopausal osteoporosis, has 76% homology to PTHrP, suggesting it may have potential to improve fracture healing. To test this hypothesis, ninety-six 12-week-old male rats underwent unilateral internally-stabilized closed mid-diaphyseal femoral fractures and were treated starting the next day with daily s.c. saline (Vehicle) or abaloparatide at 5 or 20 µg/kg/d for 4 or 6 weeks (16 rats/group/time point). Histomorphometry and histology analyses indicated that fracture calluses from the abaloparatide groups exhibited significantly greater total area, higher fluorescence scores indicating more newly-formed bone, and higher fracture bridging scores versus Vehicle controls. Callus bridging score best correlated with callus cartilage score (r = 0.64) and fluorescence score (r = 0.67) at week 4, and callus area correlated with cartilage score (r = 0.60) and fluorescence score (r = 0.89) at Week 6. By micro-CT, calluses from one or both abaloparatide groups had greater bone volume, bone volume fraction, bone mineral content, bone mineral density, and cross-sectional area at both time points versus Vehicle controls. Destructive bending tests indicated greater callus maximum load and stiffness in one or both abaloparatide groups at both time points versus Vehicle controls. These results provide preliminary preclinical evidence for improved fracture healing with systemically-administered abaloparatide. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.


Subject(s)
Femoral Fractures/drug therapy , Fracture Healing/drug effects , Parathyroid Hormone-Related Protein/therapeutic use , Receptor, Parathyroid Hormone, Type 1/agonists , Animals , Bony Callus/diagnostic imaging , Bony Callus/drug effects , Drug Evaluation, Preclinical , Male , Parathyroid Hormone-Related Protein/pharmacology , Rats, Sprague-Dawley , X-Ray Microtomography
12.
J Am Soc Mass Spectrom ; 30(1): 24-33, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29949061

ABSTRACT

The initial stages of protein unfolding may reflect the stability of the entire fold and can also reveal which parts of a protein can be perturbed, without restructuring the rest. In this work, we couple UVPD with activated ion mobility mass spectrometry to measure how three model proteins start to unfold. Ubiquitin, cytochrome c and myoglobin ions produced via nESI from salty solutions are subjected to UV irradiation pre-mobility separation; experiments are conducted with a range of source conditions which alter the conformation of the precursor ion as shown by the drift time profiles. For all three proteins, the compact structures result in less fragmentation than more extended structures which emerge following progressive in-source activation. Cleavage sites are found to differ between conformational ensembles, for example, for the dominant charge state of cytochrome c [M + 7H]7+, cleavage at Phe10, Thr19 and Val20 was only observed in activating conditions whilst cleavage at Ala43 is dramatically enhanced. Mapping the photo-cleaved fragments onto crystallographic structures provides insight into the local structural changes that occur as protein unfolding progresses, which is coupled to global restructuring observed in the drift time profiles. Graphical Abstract.


Subject(s)
Cytochromes c/chemistry , Ion Mobility Spectrometry/methods , Myoglobin/chemistry , Protein Unfolding , Ubiquitin/chemistry , Animals , Cattle , Cytochromes c/metabolism , Myoglobin/metabolism , Ubiquitin/metabolism , Ultraviolet Rays
13.
J Am Soc Mass Spectrom ; 30(1): 45-57, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30460642

ABSTRACT

Gas-phase hydrogen/deuterium exchange measured by mass spectrometry (gas-phase HDX-MS) is a fast method to probe the conformation of protein ions. The use of gas-phase HDX-MS to investigate the structure and interactions of protein complexes is however mostly unharnessed. Ionizing proteins under conditions that maximize preservation of their native structure (native MS) enables the study of solution-like conformation for milliseconds after electrospray ionization (ESI), which enables the use of ND3-gas inside the mass spectrometer to rapidly deuterate heteroatom-bound non-amide hydrogens. Here, we explored the utility of gas-phase HDX-MS to examine protein-protein complexes and inform on their binding surface and the structural consequences of gas-phase dissociation. Protein complexes ranging from 24 kDa dimers to 395 kDa 24mers were analyzed by gas-phase HDX-MS with subsequent collision-induced dissociation (CID). The number of exchangeable sites involved in complex formation could, therefore, be estimated. For instance, dimers of cytochrome c or α-lactalbumin incorporated less deuterium/subunit than their unbound monomer counterparts, providing a measure of the number of heteroatom-bound side-chain hydrogens involved in complex formation. We furthermore studied if asymmetric charge-partitioning upon dissociation of protein complexes caused intermolecular H/D migration. In larger multimeric protein complexes, the dissociated monomer showed a significant increase in deuterium. This indicates that intermolecular H/D migration occurs as part of the asymmetric partitioning of charge during CID. We discuss several models that may explain this increase deuterium content and find that a model where only deuterium involved in migrating charge can account for most of the deuterium enrichment observed on the ejected monomer. In summary, the deuterium content of the ejected subunit can be used to estimate that of the intact complex with deviations observed for large complexes accounted for by charge migration. Graphical abstract ᅟ.


Subject(s)
Deuterium Exchange Measurement/methods , Mass Spectrometry/methods , Multiprotein Complexes/analysis , Multiprotein Complexes/chemistry , Animals , Cattle , Cytochromes c/analysis , Cytochromes c/chemistry , Cytochromes c/metabolism , Deuterium Exchange Measurement/instrumentation , Gases/chemistry , Humans , Lactalbumin/analysis , Lactalbumin/chemistry , Lactalbumin/metabolism , Mass Spectrometry/instrumentation , Multiprotein Complexes/metabolism , Prealbumin/analysis , Prealbumin/chemistry , Prealbumin/metabolism , Protein Multimerization
14.
Rapid Commun Mass Spectrom ; 32(24): 2099-2105, 2018 Dec 30.
Article in English | MEDLINE | ID: mdl-30230090

ABSTRACT

RATIONALE: In-source decay (ISD) matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry with a 1,5-diaminonaphthalene (1,5-DAN) matrix is used for the structural characterisation of peptides. However, MALDI spectra are intrinsically complicated by the presence of matrix ions, which interfere with the peptide fragments. This may cause false-positive results or reduced sequence coverage. This paper reports investigations of ISD processes in an intermediate pressure MALDI ion source and a protocol for the removal of interfering ions using ion mobility separation (IMS). METHODS: An intermediate pressure MALDI source of a Q-IMS-Q-TOF instrument (Synapt G2) has been employed for the ISD of selected peptides using a 1,5-DAN matrix. RESULTS: Successful coupling of the MALDI source tuned for ISD experiments using IMS is demonstrated. The IMS made it possible to remove interfering matrix ions effectively from the spectra and thus to increase the confidence of spectral interpretation. Extensive fragment series corresponding to N-Cα bond cleavages were observed under optimised conditions; on the other hand, weaker series of ions caused by peptide bond cleavages were prevalent for default conditions and/or the α-hydroxycinnamic acid matrix. CONCLUSIONS: Ion mobility has been used for the elimination of matrix ions. The technique has been applied to top-down sequencing of non-tryptic peptides, such as the human palmitoylated analogue of prolactin-releasing peptide used in recent obesity studies, and human and insect antimicrobial peptides.


Subject(s)
Mass Spectrometry/methods , Peptides/chemistry , Animals , Antimicrobial Cationic Peptides/chemistry , Humans , Insecta , Mass Spectrometry/instrumentation , Prolactin-Releasing Hormone/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
15.
EGEMS (Wash DC) ; 6(1): 11, 2018 May 25.
Article in English | MEDLINE | ID: mdl-30094283

ABSTRACT

INTRODUCTION: Patient privacy and data security concerns often limit the feasibility of pooling patient-level data from multiple sources for analysis. Distributed data networks (DDNs) that employ privacy-protecting analytical methods, such as distributed regression analysis (DRA), can mitigate these concerns. However, DRA is not routinely implemented in large DDNs. OBJECTIVE: We describe the design and implementation of a process framework and query workflow that allow automatable DRA in real-world DDNs that use PopMedNet™, an open-source distributed networking software platform. METHODS: We surveyed and catalogued existing hardware and software configurations at all data partners in the Sentinel System, a PopMedNet-driven DDN. Key guiding principles for the design included minimal disruptions to the current PopMedNet query workflow and minimal modifications to data partners' hardware configurations and software requirements. RESULTS: We developed and implemented a three-step process framework and PopMedNet query workflow that enables automatable DRA: 1) assembling a de-identified patient-level dataset at each data partner, 2) distributing a DRA package to data partners for local iterative analysis, and 3) iteratively transferring intermediate files between data partners and analysis center. The DRA query workflow is agnostic to statistical software, accommodates different regression models, and allows different levels of user-specified automation. DISCUSSION: The process framework can be generalized to and the query workflow can be adopted by other PopMedNet-based DDNs. CONCLUSION: DRA has great potential to change the paradigm of data analysis in DDNs. Successful implementation of DRA in Sentinel will facilitate adoption of the analytic approach in other DDNs.

16.
Anal Chem ; 90(13): 8020-8027, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29846054

ABSTRACT

Tandem mass spectrometry (MS/MS) is an invaluable experimental tool for providing analytical data supporting the identification of small molecules and peptides in mass-spectrometry-based "omics" experiments. Data-dependent MS/MS (DDA) is a real-time MS/MS-acquisition strategy that is responsive to the signals detected in a given sample. However, in analysis of even moderately complex samples with state-of-the-art instrumentation, the speed of MS/MS acquisition is insufficient to offer comprehensive MS/MS coverage of all detected molecules. Data-independent approaches (DIA) offer greater MS/MS coverage, typically at the expense of selectivity or sensitivity. This report describes data-set-dependent MS/MS (DsDA), a novel integration of MS1-data processing and target prioritization to enable comprehensive MS/MS sampling during the initial MS-level experiment. This approach is guided by the premise that in omics experiments, individual injections are typically made as part of a larger set of samples, and feedback between data processing and data acquisition can allow approximately real-time optimization of MS/MS-acquisition parameters and nearly complete MS/MS-sampling coverage. Using a combination of R, Proteowizard, XCMS, and WRENS software, this concept was implemented on a liquid-chromatograph-coupled quadrupole time-of-flight mass spectrometer. The results illustrate comprehensive MS/MS coverage for a set of complex small-molecule samples and demonstrate a strong improvement on traditional DDA.


Subject(s)
Data Analysis , Tandem Mass Spectrometry , Animals , Cattle , Hordeum/chemistry , Muscles/chemistry , Onions/chemistry
17.
Anal Chem ; 90(2): 1077-1080, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29266933

ABSTRACT

Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is now a routinely used technique to inform on protein structure, dynamics, and interactions. Localizing the incorporated deuterium content on a single residue basis increases the spatial resolution of this technique enabling detailed structural analysis. Here, we investigate the use of ultraviolet photodissociation (UVPD) at 213 nm to measure deuterium levels at single residue resolution in HDX-MS experiments. Using a selectively labeled peptide, we show that UVPD occurs without H/D scrambling as the peptide probe accurately retains its solution-phase deuterium labeling pattern. Our results indicate that UVPD provides an attractive alternative to electron mediated dissociation for increasing the spatial resolution of the HDX-MS experiment, capable of yielding high fragmentation efficiency, high fragment ion diversity, and low precursor ion charge-state dependency.


Subject(s)
Mass Spectrometry/methods , Peptides/chemistry , Deuterium/analysis , Deuterium Exchange Measurement/methods , Photolysis , Ultraviolet Rays
18.
Rapid Commun Mass Spectrom ; 31(17): 1415-1423, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28590551

ABSTRACT

RATIONALE: The position of C=C within fatty acyl chains affects the biological function of lipids. Ozone-induced dissociation mass spectrometry (OzID-MS) has great potential in determination of lipid double-bond position, but has generally been implemented on low-resolution ion trap mass spectrometers. In addition, most of the OzID-MS experiments carried out so far were focused on the sodiated adducts of lipids; fragmentation of the most commonly observed protonated ions generated in LC/MS-based lipidomics workflow has been less explored. METHODS: Ozone generated in line from an ozone generator was connected to the trap and transfer gas supply line of a Synapt G2 high-resolution mass spectrometer. Protonated ions of different phosphatidylcholines (PC) were generated by electrospray ionization through direct infusion. Different parameters, including traveling wave height and velocity, trap entrance and DC potential, were adjusted to maximize the OzID efficiency. sn-positional isomers and cis/trans isomers of lipids were compared for their reactivity with ozone. RESULTS: Traveling wave height and velocity were tuned to prolong the encounter time between lipid ions and ozone, and resulted in improved OzID efficiency, as did increasing trapping region DC and entrance potential. Under optimized settings, at least 1000 times enhancement in OzID efficiency was achieved compared to that under default settings for monounsaturated PC standards. Monounsaturated C=C in the sn-2 PC isomer reacted faster with ozone than the sn-1 isomer. Similarly, the C=C in trans PC reacted faster than in cis PC. CONCLUSIONS: This is the first implementation of OzID in the trap and transfer region of a traveling wave enabled high-resolution mass spectrometer. The OzID reaction efficiency is significantly improved by slowing down ions in the trap region for their prolonged interaction with ozone. This will facilitate application of high-resolution OzID-MS in lipidomics.


Subject(s)
Lipids/analysis , Lipids/chemistry , Ozone/chemistry , Isomerism , Molecular Conformation , Phosphatidylcholines/analysis , Phosphatidylcholines/chemistry , Sodium/chemistry
19.
Anal Chem ; 89(1): 916-921, 2017 01 03.
Article in English | MEDLINE | ID: mdl-27958700

ABSTRACT

Concerted tandem and traveling wave ion mobility mass spectrometry (CTS analysis) is a unique method that results in a four-dimensional data set including nominal precursor ion mass, product ion mobility, accurate mass of product ion, and ion abundance. This nontargeted lipidomics CTS approach was applied in both positive- and negative-ion mode to phospholipids present in human serum, and the data set was used to evaluate the value of product ion mobility in identifying lipids in a complex mixture. It was determined that the combination of diagnostic product ions and unique collisional cross-section values of product ions is a powerful tool in the structural identification of lipids in a complex biological sample.


Subject(s)
Phospholipids/blood , Humans , Mass Spectrometry , Molecular Structure , Tandem Mass Spectrometry
20.
J Am Soc Mass Spectrom ; 28(2): 384-388, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27914015

ABSTRACT

Data-independent mass spectral acquisition is particularly powerful when combined with ultra-performance liquid chromatography (LC) that provides excellent separation of most components present in a given sample. Data-independent analysis (DIA) consists of alternating full MS scans and scans with fragmentation of all ions within a selected m/z range, providing precursor masses and structure information, respectively. Fragmentation spectra are acquired either by sequential isolation and fragmentation of sliding m/z ranges or fragmenting all ions entering the MS instrument with no ion isolation, termed broadband DIA. Previously, broadband DIA has only been possible using collision induced dissociation (CID). Here, we report the use of electron transfer dissociation (ETD) as the fragmentation technique in broadband DIA instead of traditional collision induced dissociation (CID) during MSE. In this approach, which we refer to as MSETD, we implement the inherent benefits provided by ETD, such as discrimination of leucine and isoleucine, in a DIA setup. The combination of DIA analysis and ETD fragmentation with supplemental CID energy provides a powerful platform to obtain information on all precursors and their sequence from a single experiment. Graphical Abstract ᅟ.

SELECTION OF CITATIONS
SEARCH DETAIL
...