Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Curr Biol ; 33(19): 4136-4149.e9, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37708888

ABSTRACT

Pathogenic fungi populate a wide range of environments and infect a diversity of host species. Despite this substantial biological flexibility, the impact of interactions between fungi and their hosts on the evolution of pathogenicity remains unclear. We studied how repeated interactions between the fungus Cryptococcus neoformans and relevant environmental and mammalian host cells-amoeba and mouse macrophages-shape the evolution of this model fungal pathogen. First, using a collection of clinical and environmental isolates of C. neoformans, we characterized a range of survival phenotypes for these strains when exposed to host cells of different species. We then performed serial passages of an environmentally isolated C. neoformans strain through either amoeba or macrophages for ∼75 generations to observe how these interactions select for improved replication within hosts. In one adapted population, we identified a single point mutation in the adenylyl cyclase gene, CAC1, that swept to fixation and confers a strong competitive advantage for growth inside macrophages. Strikingly, this growth advantage in macrophages is inversely correlated with disease severity during mouse infections, suggesting that adaptation to specific host niches can markedly reduce the pathogenicity of these fungi. These results raise intriguing questions about the influence of cyclic AMP (cAMP) signaling on pathogenicity and highlight the role of seemingly small adaptive changes in promoting fundamental shifts in the intracellular behavior and virulence of these important human pathogens.

2.
Inorg Chem ; 62(5): 1891-1900, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-35785799

ABSTRACT

Isolating isostructural compounds of tetravalent metals MIV (Zr, Hf, Ce, Th, U, Pu, Np) improves our understanding of metal hydrolysis and coordination behavior across the periodic table. These metals form polynuclear clusters typified by the hexamer [MIV6O4(OH)4]12+. Exploiting the ammonium MIV-sulfate (CeIV, ThIV, and UIV) phase space targeting rapid crystallization, we isolate the common hexamer [MIV6(OH)4(O)4]12+ but with different numbers of capping sulfates and water molecules for CeIV, ThIV, and UIV. These phases allowed a direct comparison of bonding trends across the series. Upon cocrystallization with the hexamers, higher complex structures can be identified. Thorium features assemblies with monomer-linked hexamer chains. Uranium features assemblies with sulfate-bridged hexamers and the supramolecular assembly of 14 hexamers into the U84, [U6(OH)4(O)4)14(SO4)120(H2O)42]72-. Last, cerium showcases the isolation from monomers to the Ce62, [Ce62(OH)30(O)58(SO4)71(H2O)33.25]41-. Furthermore, small-angle X-ray scattering (room temperature) shows ammonium-induced cluster assembly for CeIV but minimal reactivity for UIV and ThIV. In this study, because the phases crystallized at elevated temperature demonstrates favorable cluster assembly, these solution phase results were surprising and suggest some other characteristics such as Ce's facile redox behavior, contributes to its solution-phase speciation.

3.
Cell Host Microbe ; 30(10): 1382-1400.e8, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36099922

ABSTRACT

Environmental pathogens move from ecological niches to mammalian hosts, requiring adaptation to dramatically different environments. Microbes that disseminate farther, including the fungal meningitis pathogen Cryptococcus neoformans, require additional adaptation to diverse tissues. We demonstrate that the formation of a small C. neoformans morphotype-called "seed" cells due to their colonizing ability-is critical for extrapulmonary organ entry. Seed cells exhibit changes in fungal cell size and surface expression that result in an enhanced macrophage update. Seed cell formation is triggered by environmental factors, including C. neoformans' environmental niche, and pigeon guano with phosphate plays a central role. Seed cells show the enhanced expression of phosphate acquisition genes, and mutants unable to acquire phosphate fail to adopt the seed cell morphotype. Additionally, phosphate can be released by tissue damage, potentially establishing a feed-forward loop of seed cell formation and dissemination. Thus, C. neoformans' size variation represent inducible morphotypes that change host interactions to facilitate microbe spread.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Adaptation, Physiological , Animals , Columbidae , Cryptococcosis/microbiology , Cryptococcus neoformans/genetics , Mammals , Phosphates/metabolism
5.
J Am Chem Soc ; 143(25): 9612-9621, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34138543

ABSTRACT

Crystallization at the solid-liquid interface is difficult to spectroscopically observe and therefore challenging to understand and ultimately control at the molecular level. The Ce70-torroid formulated [CeIV70(OH)36(O)64(SO4)60(H2O)10]4-, part of a larger emerging family of MIV70-materials (M = Zr, U, Ce), presents such an opportunity. We elucidated assembly mechanisms by the X-ray scattering (small-angle scattering and total scattering) of solutions and solids as well as crystallizing and identifying fragments of Ce70 by single-crystal X-ray diffraction. Fragments show evidence for templated growth (Ce5, [Ce5(O)3(SO4)12]10-) and modular assembly from hexamer (Ce6) building units (Ce13, [Ce13(OH)6(O)12(SO4)14(H2O)14]6- and Ce62, [Ce62(OH)30(O)58(SO4)58]14-). Ce62, an almost complete ring, precipitates instantaneously in the presence of ammonium cations as two torqued arcs that interlock by hydrogen boding through NH4+, a structural motif not observed before in inorganic systems. The room temperature rapid assemblies of both Ce70 and Ce62, respectively, by the addition of Li+ and NH4+, along with ion-exchange and redox behavior, invite exploitation of this emerging material family in environmental and energy applications.

6.
Curr Clin Microbiol Rep ; 7(1): 1-11, 2020 Mar.
Article in English | MEDLINE | ID: mdl-33042730

ABSTRACT

PURPOSE OF REVIEW: Environmental fungi such as Cryptococcus neoformans and Aspergillus fumigatus must survive many different and changing environments as they transition from their environmental niches to human lungs and other organs. Fungi alter their cell surfaces and secreted macromolecules to respond to and manipulate their surroundings. RECENT FINDINGS: This review focuses on exo-polysaccharides, chains of sugars that transported out of the cell and spread to the local environment. Major exo-polysaccharides for C. neoformans and A. fumigatus are glucuronylxylomannan (GXM) and galactosaminogalactan (GAG), respectively, which accumulate at high concentrations in growth medium and infected patients. SUMMARY: Here we discuss GXM and GAG synthesis and export, their immunomodulatory properties, and their roles in biofilm formation. We also propose areas of future research to address outstanding questions in the field that could facilitate development of new disease treatments.

7.
J Mol Biol ; 431(16): 2982-3009, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31078554

ABSTRACT

Environmental fungi are globally ubiquitous and human exposure is near universal. However, relatively few fungal species are capable of infecting humans, and among fungi, few exposure events lead to severe systemic infections. Systemic infections have mortality rates of up to 90%, cost the US healthcare system $7.2 billion annually, and are typically associated with immunocompromised patients. Despite this reputation, exposure to environmental fungi results in a range of outcomes, from asymptomatic latent infections to severe systemic infection. Here we discuss different exposure outcomes for five major fungal pathogens: Aspergillus, Blastomyces, Coccidioides, Cryptococcus, and Histoplasma species. These fungi include a mold, a budding yeast, and thermal dimorphic fungi. All of these species must adapt to dramatically changing environments over the course of disease. These dynamic environments include the human lung, which is the first exposure site for these organisms. Fungi must defend themselves against host immune cells while germinating and growing, which risks further exposing microbe-associated molecular patterns to the host. We discuss immune evasion strategies during early infection, from disruption of host immune cells to major changes in fungal cell morphology.


Subject(s)
Fungi/pathogenicity , Mycoses/immunology , Opportunistic Infections/immunology , Fungi/classification , Host Microbial Interactions , Humans , Immune Evasion , Mycoses/microbiology , Opportunistic Infections/microbiology
8.
J Vis Exp ; (135)2018 05 21.
Article in English | MEDLINE | ID: mdl-29863672

ABSTRACT

Although antimicrobial drugs have dramatically increased the lifespan and quality of life in the 20th century, antimicrobial resistance threatens our entire society's ability to treat systemic infections. In the United States alone, antibiotic-resistant infections kill approximately 23,000 people a year and cost around 20 billion USD in additional healthcare. One approach to combat antimicrobial resistance is combination therapy, which is particularly useful in the critical early stage of infection, before the infecting organism and its drug resistance profile have been identified. Many antimicrobial treatments use combination therapies. However, most of these combinations are additive, meaning that the combined efficacy is the same as the sum of the individual antibiotic efficacy. Some combination therapies are synergistic: the combined efficacy is much greater than additive. Synergistic combinations are particularly useful because they can inhibit the growth of antimicrobial drug resistant strains. However, these combinations are rare and difficult to identify. This is due to the sheer number of molecules needed to be tested in a pairwise manner: a library of 1,000 molecules has 1 million potential combinations. Thus, efforts have been made to predict molecules for synergy. This article describes our high-throughput method for predicting synergistic small molecule pairs known as the Overlap2 Method (O2M). O2M uses patterns from chemical-genetic datasets to identify mutants that are hypersensitive to each molecule in a synergistic pair but not to other molecules. The Brown lab exploits this growth difference by performing a high-throughput screen for molecules that inhibit the growth of mutant but not wild-type cells. The lab's work previously identified molecules that synergize with the antibiotic trimethoprim and the antifungal drug fluconazole using this strategy. Here, the authors present a method to screen for novel synergistic combinations, which can be altered for multiple microorganisms.


Subject(s)
Drug Combinations , Drug Synergism , High-Throughput Screening Assays/methods , Drug Resistance, Microbial , Humans
9.
J Fungi (Basel) ; 4(1)2018 Feb 17.
Article in English | MEDLINE | ID: mdl-29463005

ABSTRACT

Cryptococcus neoformans is a common environmental saprophyte and human fungal pathogen that primarily causes disease in immunocompromised individuals. Similar to many environmentally acquired human fungal pathogens, C. neoformans initiates infection in the lungs. However, the main driver of mortality is invasive cryptococcosis leading to fungal meningitis. After C. neoformans gains a foothold in the lungs, a critical early step in invasion is transversal of the respiratory epithelium. In this review, we summarize current knowledge relating to pulmonary escape. We focus on fungal factors that allow C. neoformans to disseminate from the lungs via intracellular and extracellular routes.

10.
Infect Immun ; 86(3)2018 03.
Article in English | MEDLINE | ID: mdl-29203547

ABSTRACT

Cryptococcus neoformans is a common environmental yeast and opportunistic pathogen responsible for 15% of AIDS-related deaths worldwide. Mortality primarily results from meningoencephalitis, which occurs when fungal cells disseminate to the brain from the initial pulmonary infection site. A key C. neoformans virulence trait is the polysaccharide capsule. Capsule shields C. neoformans from immune-mediated recognition and destruction. The main capsule component, glucuronoxylomannan (GXM), is found both attached to the cell surface and free in the extracellular space (as exo-GXM). Exo-GXM accumulates in patient serum and cerebrospinal fluid at microgram/milliliter concentrations, has well-documented immunosuppressive properties, and correlates with poor patient outcomes. However, it is poorly understood whether exo-GXM release is regulated or the result of shedding during normal capsule turnover. We demonstrate that exo-GXM release is regulated by environmental cues and inversely correlates with surface capsule levels. We identified genes specifically involved in exo-GXM release that do not alter surface capsule thickness. The first mutant, the liv7Δ strain, released less GXM than wild-type cells when capsule was not induced. The second mutant, the cnag_00658Δ strain, released more exo-GXM under capsule-inducing conditions. Exo-GXM release observed in vitro correlated with polystyrene adherence, virulence, and fungal burden during murine infection. Additionally, we found that exo-GXM reduced cell size and capsule thickness under capsule-inducing conditions, potentially influencing dissemination. Finally, we demonstrated that exo-GXM prevents immune cell infiltration into the brain during disseminated infection and highly inflammatory intracranial infection. Our data suggest that exo-GXM performs a distinct role from capsule GXM during infection, altering cell size and suppressing inflammation.


Subject(s)
Central Nervous System/cytology , Cryptococcosis/microbiology , Cryptococcus neoformans/pathogenicity , Fungal Polysaccharides/pharmacology , Animals , Central Nervous System/immunology , Cryptococcosis/pathology , Cryptococcus neoformans/immunology , Cryptococcus neoformans/metabolism , Female , Fungal Polysaccharides/genetics , Fungal Polysaccharides/metabolism , Lung Diseases, Fungal/microbiology , Mice , Mice, Inbred C57BL , Mutation , Virulence
11.
Expert Rev Clin Pharmacol ; 10(11): 1203-1214, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28836870

ABSTRACT

INTRODUCTION: In the modern antimicrobial era, the rapid spread of resistance to antibiotics and introduction of new and mutating viruses is a global concern. Combating antimicrobial resistant microbes (AMR) requires coordinated international efforts that incorporate new conventional antibiotic development as well as development of alternative drugs with antimicrobial activity, management of existing antimicrobials, and rapid detection of AMR pathogens. Areas covered: This manuscript discusses some conventional strategies to control microbial resistance. The main purpose of the manuscript is to present information on specific herbal medicines that may serve as good treatment alternatives to conventional antimicrobials for infections sensitive to conventional as well as resistant strains of microorganisms. Expert commentary: Identification of potential new antimicrobials is challenging; however, one source for potential structurally diverse and complex antimicrobials are natural products. Natural products may have advantages over other post-germ theory antimicrobials. Many antimicrobial herbal medicines possess simultaneous antibacterial, antifungal, antiprotozoal and/or antiviral properties. Herbal products have the potential to boost host resistance to infections, particularly in immunocompromised patients. Antimicrobial broad-spectrum activity in conjunction with immunostimulatory properties may help to prevent microbial resistance to herbal medicine. As part of the efforts to broaden use of herbal medicines to treat microbial infections, pre-clinical and clinical testing guidelines of these compounds as a whole should be implemented to ensure consistency in formulation, efficacy and safety.


Subject(s)
Anti-Infective Agents/administration & dosage , Phytotherapy/methods , Plant Preparations/administration & dosage , Animals , Anti-Infective Agents/pharmacology , Drug Design , Drug Resistance, Microbial , Humans , Immunocompromised Host , Infections/drug therapy , Infections/microbiology , Plant Preparations/pharmacology
12.
PLoS Biol ; 15(6): e2001644, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28632788

ABSTRACT

Antibiotic-resistant infections kill approximately 23,000 people and cost $20,000,000,000 each year in the United States alone despite the widespread use of small-molecule antimicrobial combination therapy. Antibiotic combinations typically have an additive effect: the efficacy of the combination matches the sum of the efficacies of each antibiotic when used alone. Small molecules can also act synergistically when the efficacy of the combination is greater than the additive efficacy. However, synergistic combinations are rare and have been historically difficult to identify. High-throughput identification of synergistic pairs is limited by the scale of potential combinations: a modest collection of 1,000 small molecules involves 1 million pairwise combinations. Here, we describe a high-throughput method for rapid identification of synergistic small-molecule pairs, the overlap2 method (O2M). O2M extracts patterns from chemical-genetic datasets, which are created when a collection of mutants is grown in the presence of hundreds of different small molecules, producing a precise set of phenotypes induced by each small molecule across the mutant set. The identification of mutants that show the same phenotype when treated with known synergistic molecules allows us to pinpoint additional molecule combinations that also act synergistically. As a proof of concept, we focus on combinations with the antibiotics trimethoprim and sulfamethizole, which had been standard treatment against urinary tract infections until widespread resistance decreased efficacy. Using O2M, we screened a library of 2,000 small molecules and identified several that synergize with the antibiotic trimethoprim and/or sulfamethizole. The most potent of these synergistic interactions is with the antiviral drug azidothymidine (AZT). We then demonstrate that understanding the molecular mechanism underlying small-molecule synergistic interactions allows the rational design of additional combinations that bypass drug resistance. Trimethoprim and sulfamethizole are both folate biosynthesis inhibitors. We find that this activity disrupts nucleotide homeostasis, which blocks DNA replication in the presence of AZT. Building on these data, we show that other small molecules that disrupt nucleotide homeostasis through other mechanisms (hydroxyurea and floxuridine) also act synergistically with AZT. These novel combinations inhibit the growth and virulence of trimethoprim-resistant clinical Escherichia coli and Klebsiella pneumoniae isolates, suggesting that they may be able to be rapidly advanced into clinical use. In sum, we present a generalizable method to screen for novel synergistic combinations, to identify particular mechanisms resulting in synergy, and to use the mechanistic knowledge to rationally design new combinations that bypass drug resistance.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Infective Agents, Urinary/pharmacology , Drug Resistance, Multiple, Bacterial , Escherichia coli/drug effects , Klebsiella pneumoniae/drug effects , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents, Urinary/chemistry , Anti-Infective Agents, Urinary/therapeutic use , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Assay , Computational Biology , Drug Design , Drug Synergism , Drug Therapy, Combination , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/microbiology , Escherichia coli/growth & development , Escherichia coli/metabolism , Escherichia coli Infections/drug therapy , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Folic Acid Antagonists/chemistry , Folic Acid Antagonists/pharmacology , Folic Acid Antagonists/therapeutic use , High-Throughput Screening Assays , Klebsiella Infections/drug therapy , Klebsiella Infections/metabolism , Klebsiella Infections/microbiology , Klebsiella pneumoniae/growth & development , Klebsiella pneumoniae/metabolism , Microbial Sensitivity Tests , Mutation , Mutation Rate , Pattern Recognition, Automated , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/therapeutic use , Small Molecule Libraries , Sulfamethizole/agonists , Sulfamethizole/chemistry , Sulfamethizole/pharmacology , Sulfamethizole/therapeutic use , Trimethoprim/agonists , Trimethoprim/chemistry , Trimethoprim/pharmacology , Trimethoprim/therapeutic use , Zebrafish/embryology
13.
Cell ; 159(5): 1168-1187, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25416953

ABSTRACT

The fungal meningitis pathogen Cryptococcus neoformans is a central driver of mortality in HIV/AIDS. We report a genome-scale chemical genetic data map for this pathogen that quantifies the impact of 439 small-molecule challenges on 1,448 gene knockouts. We identified chemical phenotypes for 83% of mutants screened and at least one genetic response for each compound. C. neoformans chemical-genetic responses are largely distinct from orthologous published profiles of Saccharomyces cerevisiae, demonstrating the importance of pathogen-centered studies. We used the chemical-genetic matrix to predict novel pathogenicity genes, infer compound mode of action, and to develop an algorithm, O2M, that predicts antifungal synergies. These predictions were experimentally validated, thereby identifying virulence genes, a molecule that triggers G2/M arrest and inhibits the Cdc25 phosphatase, and many compounds that synergize with the antifungal drug fluconazole. Our work establishes a chemical-genetic foundation for approaching an infection responsible for greater than one-third of AIDS-related deaths.


Subject(s)
Antifungal Agents/pharmacology , Cryptococcus neoformans/drug effects , Cryptococcus neoformans/genetics , AIDS-Related Opportunistic Infections/microbiology , Algorithms , Animals , Cryptococcus neoformans/growth & development , Cryptococcus neoformans/pathogenicity , Drug Discovery , Gene Knockout Techniques , Microbial Sensitivity Tests , Saccharomyces cerevisiae/genetics , Virulence Factors/genetics
14.
Cell ; 158(5): 1072-1082, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25171408

ABSTRACT

[GAR(+)] is a protein-based element of inheritance that allows yeast (Saccharomyces cerevisiae) to circumvent a hallmark of their biology: extreme metabolic specialization for glucose fermentation. When glucose is present, yeast will not use other carbon sources. [GAR(+)] allows cells to circumvent this "glucose repression." [GAR(+)] is induced in yeast by a factor secreted by bacteria inhabiting their environment. We report that de novo rates of [GAR(+)] appearance correlate with the yeast's ecological niche. Evolutionarily distant fungi possess similar epigenetic elements that are also induced by bacteria. As expected for a mechanism whose adaptive value originates from the selective pressures of life in biological communities, the ability of bacteria to induce [GAR(+)] and the ability of yeast to respond to bacterial signals have been extinguished repeatedly during the extended monoculture of domestication. Thus, [GAR(+)] is a broadly conserved adaptive strategy that links environmental and social cues to heritable changes in metabolism.


Subject(s)
Epigenesis, Genetic , Glucose/metabolism , Prions/metabolism , Saccharomyces cerevisiae/metabolism , Ascomycota/genetics , Ascomycota/metabolism , Bacteria/chemistry , Bacteria/genetics , Dekkera/genetics , Dekkera/metabolism , Phenotype , Saccharomyces cerevisiae/genetics
15.
Cell ; 158(5): 1083-1093, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25171409

ABSTRACT

In experimental science, organisms are usually studied in isolation, but in the wild, they compete and cooperate in complex communities. We report a system for cross-kingdom communication by which bacteria heritably transform yeast metabolism. An ancient biological circuit blocks yeast from using other carbon sources in the presence of glucose. [GAR(+)], a protein-based epigenetic element, allows yeast to circumvent this "glucose repression" and use multiple carbon sources in the presence of glucose. Some bacteria secrete a chemical factor that induces [GAR(+)]. [GAR(+)] is advantageous to bacteria because yeast cells make less ethanol and is advantageous to yeast because their growth and long-term viability is improved in complex carbon sources. This cross-kingdom communication is broadly conserved, providing a compelling argument for its adaptive value. By heritably transforming growth and survival strategies in response to the selective pressures of life in a biological community, [GAR(+)] presents a unique example of Lamarckian inheritance.


Subject(s)
Epigenesis, Genetic , Prions/metabolism , Saccharomyces cerevisiae/metabolism , Staphylococcus hominis/metabolism , Fermentation , Glucose/metabolism , Saccharomyces cerevisiae/genetics , Staphylococcus hominis/genetics , Wine/microbiology , Yeasts/genetics , Yeasts/metabolism
16.
mBio ; 5(1): e00765-13, 2014 Feb 11.
Article in English | MEDLINE | ID: mdl-24520056

ABSTRACT

UNLABELLED: Cryptococcosis is an infectious disease of global significance for which new therapies are needed. Repurposing previously developed drugs for new indications can expedite the translation of new therapies from bench to beside. Here, we characterized the anti-cryptococcal activity and antifungal mechanism of estrogen receptor antagonists related to the breast cancer drugs tamoxifen and toremifene. Tamoxifen and toremifene are fungicidal and synergize with fluconazole and amphotericin B in vitro. In a mouse model of disseminated cryptococcosis, tamoxifen at concentrations achievable in humans combines with fluconazole to decrease brain burden by ~1 log10. In addition, these drugs inhibit the growth of Cryptococcus neoformans within macrophages, a niche not accessible by current antifungal drugs. Toremifene and tamoxifen directly bind to the essential EF hand protein calmodulin, as determined by thermal shift assays with purified C. neoformans calmodulin (Cam1), prevent Cam1 from binding to its well-characterized substrate calcineurin (Cna1), and block Cna1 activation. In whole cells, toremifene and tamoxifen block the calcineurin-dependent nuclear localization of the transcription factor Crz1. A large-scale chemical genetic screen with a library of C. neoformans deletion mutants identified a second EF hand-containing protein, which we have named calmodulin-like protein 1 (CNAG_05655), as a potential target, and further analysis showed that toremifene directly binds Cml1 and modulates its ability to bind and activate Cna1. Importantly, tamoxifen analogs (idoxifene and methylene-idoxifene) with increased calmodulin antagonism display improved anti-cryptococcal activity, indicating that calmodulin inhibition can be used to guide a systematic optimization of the anti-cryptococcal activity of the triphenylethylene scaffold. IMPORTANCE: Worldwide, cryptococcosis affects approximately 1 million people annually and kills more HIV/AIDS patients per year than tuberculosis. The gold standard therapy for cryptococcosis is amphotericin B plus 5-flucytosine, but this regimen is not readily available in regions where resources are limited and where the burden of disease is highest. Herein, we show that molecules related to the breast cancer drug tamoxifen are fungicidal for Cryptococcus and display a number of pharmacological properties desirable for an anti-cryptococcal drug, including synergistic fungicidal activity with fluconazole in vitro and in vivo, oral bioavailability, and activity within macrophages. We have also demonstrated that this class of molecules targets calmodulin as part of their mechanism of action and that tamoxifen analogs with increased calmodulin antagonism have improved anti-cryptococcal activity. Taken together, these results indicate that tamoxifen is a pharmacologically attractive scaffold for the development of new anti-cryptococcal drugs and provide a mechanistic basis for its further optimization.


Subject(s)
Antifungal Agents/pharmacology , Cryptococcus neoformans/drug effects , Drug Synergism , Fluconazole/pharmacology , Fungal Proteins/metabolism , Selective Estrogen Receptor Modulators/pharmacology , Antifungal Agents/metabolism , Cryptococcus neoformans/growth & development , EF Hand Motifs , Protein Binding , Tamoxifen/pharmacology , Toremifene/pharmacology
17.
PLoS Genet ; 8(12): e1003168, 2012.
Article in English | MEDLINE | ID: mdl-23300468

ABSTRACT

In many human fungal pathogens, genes required for disease remain largely unannotated, limiting the impact of virulence gene discovery efforts. We tested the utility of a cross-species genetic interaction profiling approach to obtain clues to the molecular function of unannotated pathogenicity factors in the human pathogen Cryptococcus neoformans. This approach involves expression of C. neoformans genes of interest in each member of the Saccharomyces cerevisiae gene deletion library, quantification of their impact on growth, and calculation of the cross-species genetic interaction profiles. To develop functional predictions, we computed and analyzed the correlations of these profiles with existing genetic interaction profiles of S. cerevisiae deletion mutants. For C. neoformans LIV7, which has no S. cerevisiae ortholog, this profiling approach predicted an unanticipated role in the Golgi apparatus. Validation studies in C. neoformans demonstrated that Liv7 is a functional Golgi factor where it promotes the suppression of the exposure of a specific immunostimulatory molecule, mannose, on the cell surface, thereby inhibiting phagocytosis. The genetic interaction profile of another pathogenicity gene that lacks an S. cerevisiae ortholog, LIV6, strongly predicted a role in endosome function. This prediction was also supported by studies of the corresponding C. neoformans null mutant. Our results demonstrate the utility of quantitative cross-species genetic interaction profiling for the functional annotation of fungal pathogenicity proteins of unknown function including, surprisingly, those that are not conserved in sequence across fungi.


Subject(s)
Cryptococcus neoformans , Fungi , Saccharomyces cerevisiae , Virulence Factors/genetics , Cryptococcus neoformans/genetics , Cryptococcus neoformans/pathogenicity , Endosomes/genetics , Endosomes/metabolism , Fungi/genetics , Fungi/pathogenicity , Gene Expression Profiling , Gene Expression Regulation, Fungal , Golgi Apparatus/genetics , Golgi Apparatus/metabolism , Humans , Molecular Sequence Annotation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Sequence Deletion
18.
Cell Host Microbe ; 9(3): 243-251, 2011 Mar 17.
Article in English | MEDLINE | ID: mdl-21402362

ABSTRACT

The antiphagocytic polysaccharide capsule of the human fungal pathogen Cryptococcus neoformans is a major virulence attribute. However, previous studies of the pleiotropic virulence determinant Gat201, a GATA family transcription factor, suggested that capsule-independent antiphagocytic mechanisms exist. We have determined that Gat201 controls the mRNA levels of ∼1100 genes (16% of the genome) and binds the upstream regions of ∼130 genes. Seven Gat201-bound genes encode for putative and known transcription factors--including two previously implicated in virulence--suggesting an extensive regulatory network. Systematic analysis pinpointed two critical Gat201-bound genes, GAT204 (a transcription factor) and BLP1, which account for much of the capsule-independent antiphagocytic function of Gat201. A strong correlation was observed between the quantitative effects of single and double mutants on phagocytosis in vitro and on host colonization in vivo. This genetic dissection provides evidence that capsule-independent antiphagocytic mechanisms are pivotal for successful mammalian infection by C. neoformans.


Subject(s)
Cryptococcus neoformans/pathogenicity , Fungal Proteins/metabolism , GATA Transcription Factors/metabolism , Phagocytosis , Virulence Factors/metabolism , Animals , Bacterial Capsules/physiology , Chromatin Immunoprecipitation/methods , Cryptococcosis/microbiology , Cryptococcus neoformans/genetics , Cryptococcus neoformans/growth & development , Fungal Proteins/genetics , GATA Transcription Factors/genetics , Gene Expression Profiling , Gene Expression Regulation, Fungal , Host-Pathogen Interactions , Humans , Lung/microbiology , Mice , Oligonucleotide Array Sequence Analysis , Transcriptional Activation , Virulence Factors/genetics
19.
Genes Dev ; 23(19): 2320-32, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19797769

ABSTRACT

Several well-characterized fungal proteins act as prions, proteins capable of multiple conformations, each with different activities, at least one of which is self-propagating. Through such self-propagating changes in function, yeast prions act as protein-based elements of phenotypic inheritance. We report a prion that makes cells resistant to the glucose-associated repression of alternative carbon sources, [GAR(+)] (for "resistant to glucose-associated repression," with capital letters indicating dominance and brackets indicating its non-Mendelian character). [GAR(+)] appears spontaneously at a high rate and is transmissible by non-Mendelian, cytoplasmic inheritance. Several lines of evidence suggest that the prion state involves a complex between a small fraction of the cellular complement of Pma1, the major plasma membrane proton pump, and Std1, a much lower-abundance protein that participates in glucose signaling. The Pma1 proteins from closely related Saccharomyces species are also associated with the appearance of [GAR(+)]. This allowed us to confirm the relationship between Pma1, Std1, and [GAR(+)] by establishing that these proteins can create a transmission barrier for prion propagation and induction in Saccharomyces cerevisiae. The fact that yeast cells employ a prion-based mechanism for heritably switching between distinct carbon source utilization strategies, and employ the plasma membrane proton pump to do so, expands the biological framework in which self-propagating protein-based elements of inheritance operate.


Subject(s)
Carbon/metabolism , Prions , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Gene Expression , Genes, Fungal/genetics , Glucose/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Monosaccharide Transport Proteins/metabolism , Phenotype , Proton-Translocating ATPases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...