Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Neurosci ; 43(49): 8403-8424, 2023 12 06.
Article in English | MEDLINE | ID: mdl-37871964

ABSTRACT

The sense of orientation of an animal is derived from the head direction (HD) system found in several limbic structures and depends on an intact vestibular labyrinth. However, how the vestibular system influences the generation and updating of the HD signal remains poorly understood. Anatomical and lesion studies point toward three key brainstem nuclei as key components for generating the HD signal-nucleus prepositus hypoglossi, supragenual nucleus, and dorsal paragigantocellularis reticular nuclei. Collectively, these nuclei are situated between the vestibular nuclei and the dorsal tegmental and lateral mammillary nuclei, which are thought to serve as the origin of the HD signal. To determine the types of information these brain areas convey to the HD network, we recorded neurons from these regions while female rats actively foraged in a cylindrical enclosure or were restrained and rotated passively. During foraging, a large subset of cells in all three nuclei exhibited activity that correlated with the angular head velocity (AHV) of the rat. Two fundamental types of AHV cells were observed; (1) symmetrical AHV cells increased or decreased their firing with increases in AHV regardless of the direction of rotation, and (2) asymmetrical AHV cells responded differentially to clockwise and counterclockwise head rotations. When rats were passively rotated, some AHV cells remained sensitive to AHV, whereas firing was attenuated in other cells. In addition, a large number of AHV cells were modulated by linear head velocity. These results indicate the types of information conveyed from the vestibular nuclei that are responsible for generating the HD signal.SIGNIFICANCE STATEMENT Extracellular recording of brainstem nuclei (nucleus prepositus hypoglossi, supragenual nucleus, and dorsal paragigantocellularis reticular nucleus) that project to the head direction circuit identified different types of AHV cells while rats freely foraged in a cylindrical environment. The firing of many cells was also modulated by linear velocity. When rats were restrained and passively rotated, some cells remained sensitive to AHV, whereas others had attenuated firing. These brainstem nuclei provide critical information about the rotational movement of the head of the rat in the azimuthal plane.


Subject(s)
Movement , Neurons , Rats , Female , Animals , Movement/physiology , Neurons/physiology , Vestibular Nuclei , Cell Nucleus , Head Movements/physiology , Head/physiology
2.
bioRxiv ; 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37034640

ABSTRACT

An animal's perceived sense of orientation depends upon the head direction (HD) system found in several limbic structures and depends upon an intact peripheral vestibular labyrinth. However, how the vestibular system influences the generation, maintenance, and updating of the HD signal remains poorly understood. Anatomical and lesion studies point towards three key brainstem nuclei as being potential critical components in generating the HD signal: nucleus prepositus hypoglossi (NPH), supragenual nucleus (SGN), and dorsal paragigantocellularis reticular nuclei (PGRNd). Collectively, these nuclei are situated between the vestibular nuclei and the dorsal tegmental and lateral mammillary nuclei, which are thought to serve as the origin of the HD signal. To test this hypothesis, extracellular recordings were made in these areas while rats either freely foraged in a cylindrical environment or were restrained and rotated passively. During foraging, a large subset of cells in all three nuclei exhibited activity that correlated with changes in the rat's angular head velocity (AHV). Two fundamental types of AHV cells were observed: 1) symmetrical AHV cells increased or decreased their neural firing with increases in AHV regardless of the direction of rotation; 2) asymmetrical AHV cells responded differentially to clockwise (CW) and counter-clockwise (CCW) head rotations. When rats were passively rotated, some AHV cells remained sensitive to AHV whereas others had attenuated firing. In addition, a large number of AHV cells were modulated by linear head velocity. These results indicate the types of information conveyed in the ascending vestibular pathways that are responsible for generating the HD signal. Significance Statement: Extracellular recording of brainstem nuclei (nucleus prepositus hypoglossi, supragenual nucleus, and dorsal paragigantocellularis reticular nucleus) that project to the head direction circuit identified different types of angular head velocity (AHV) cells while rats freely foraged in a cylindrical environment. The firing of many cells was also modulated by linear velocity. When rats were restrained and passively rotated some cells remained sensitive to AHV, whereas others had attenuated firing. These brainstem nuclei provide critical information about the rotational movement of the rat's head in the azimuthal plane.

3.
4.
J Neurophysiol ; 108(10): 2767-84, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22875899

ABSTRACT

Neural activity in several limbic areas varies as a function of the animal's head direction (HD) in the horizontal plane. Lesions of the vestibular periphery abolish this HD cell signal, suggesting an essential role for vestibular afference in HD signal generation. The organization of brain stem pathways conveying vestibular information to the HD circuit is poorly understood; however, recent anatomical work has identified the supragenual nucleus (SGN) as a putative relay. To test this hypothesis, we made lesions of the SGN in rats and screened for HD cells in the anterodorsal thalamus. In animals with complete bilateral lesions, the overall number of HD cells was significantly reduced relative to control animals. In animals with unilateral lesions of the SGN, directional activity was present, but the preferred firing directions of these cells were unstable and less influenced by the rotation of an environmental landmark. In addition, we found that preferred directions displayed large directional shifts when animals foraged for food in a darkened environment and when they were navigating from a familiar environment to a novel one, suggesting that the SGN plays a critical role in projecting essential self-motion (idiothetic) information to the HD cell circuit.


Subject(s)
Action Potentials , Head Movements/physiology , Neurons/physiology , Pons/physiology , Thalamus/physiology , Animals , Darkness , Electrolytes , Female , Nerve Block , Neurons/classification , Orientation , Pons/cytology , Pons/surgery , Proprioception , Rats , Rats, Long-Evans , Thalamus/cytology , Vestibule, Labyrinth/innervation
5.
J Neurophysiol ; 105(6): 2989-3001, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21451060

ABSTRACT

Successful navigation requires a constantly updated neural representation of directional heading, which is conveyed by head direction (HD) cells. The HD signal is predominantly controlled by visual landmarks, but when familiar landmarks are unavailable, self-motion cues are able to control the HD signal via path integration. Previous studies of the relationship between HD cell activity and path integration have been limited to two or more arenas located in the same room, a drawback for interpretation because the same visual cues may have been perceptible across arenas. To address this issue, we tested the relationship between HD cell activity and path integration by recording HD cells while rats navigated within a 14-unit T-maze and in a multiroom maze that consisted of unique arenas that were located in different rooms but connected by a passageway. In the 14-unit T-maze, the HD signal remained relatively stable between the start and goal boxes, with the preferred firing directions usually shifting <45° during maze traversal. In the multiroom maze in light, the preferred firing directions also remained relatively constant between rooms, but with greater variability than in the 14-unit maze. In darkness, HD cell preferred firing directions showed marginally more variability between rooms than in the lighted condition. Overall, the results indicate that self-motion cues are capable of maintaining the HD cell signal in the absence of familiar visual cues, although there are limits to its accuracy. In addition, visual information, even when unfamiliar, can increase the precision of directional perception.


Subject(s)
Brain/cytology , Cues , Head Movements/physiology , Neurons/physiology , Space Perception/physiology , Action Potentials/physiology , Animals , Dark Adaptation/physiology , Female , Maze Learning/physiology , Photic Stimulation/methods , Rats , Rats, Long-Evans , Spectrum Analysis
6.
J Neurosci ; 29(46): 14521-33, 2009 Nov 18.
Article in English | MEDLINE | ID: mdl-19923286

ABSTRACT

Head direction (HD) cells in the rat anterodorsal thalamic nucleus (ADN) fire relative to the animal's directional heading. Lesions of the entire vestibular labyrinth have been shown to severely alter VIIIth nerve input and disrupt these HD signals. To assess the specific contributions of the semicircular canals without altering tonic VIIIth nerve input, ADN cells were recorded from chinchillas after bilateral semicircular canal occlusion. Although ADN HD cells (and also hippocampal place cells and theta cells) were identified in intact chinchillas, no direction-specific activity was seen after canal occlusions. Instead, "bursty" cells were observed that exhibited burst-firing patterns similar to normal HD cells but with firing unrelated to the animal's actual head direction. Importantly, when pairs of bursty cells were recorded, the temporal order of their firing was dependent on the animal's turning direction, as is the case for pairs of normal HD cells. These results suggest that bursty cells are actually disrupted HD cells. The present findings further suggest that the HD cell network is still able to generate spiking activity after canal occlusions, but the semicircular canal input is critical for updating the network activity in register with changes in the animal's HD.


Subject(s)
Chinchilla/physiology , Head Movements/physiology , Movement/physiology , Semicircular Canals/physiology , Action Potentials/physiology , Animals , Male , Motor Activity/physiology , Semicircular Canals/pathology
7.
Nat Cell Biol ; 8(10): 1149-54, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16964244

ABSTRACT

Eggs attract sperm by chemical factors, a process called chemotaxis. Sperm from marine invertebrates use cGMP signalling to transduce incident chemoattractants into changes in the Ca2+ concentration in the flagellum, which control the swimming behaviour during chemotaxis. The signalling pathway downstream of the synthesis of cGMP by a guanylyl cyclase is ill-defined. In particular, the ion channels that are involved in Ca2+ influx and their mechanisms of gating are not known. Using rapid voltage-sensitive dyes and kinetic techniques, we record the voltage response that is evoked by the chemoattractant in sperm from the sea urchin Arbacia punctulata. We show that the chemoattractant evokes a brief hyperpolarization followed by a sustained depolarization. The hyperpolarization is caused by the opening of K+-selective cyclic-nucleotide-gated (CNG) channels in the flagellum. Ca2+ influx commences at the onset of recovery from hyperpolarization. The voltage threshold of Ca2+ entry indicates the involvement of low-voltage-activated Ca(v) channels. These results establish a model of chemosensory transduction in sperm whereby a cGMP-induced hyperpolarization opens Ca(v) channels by a 'recovery-from-inactivation' mechanism and unveil an evolutionary kinship between transduction mechanisms in sperm and photoreceptors.


Subject(s)
Calcium Signaling/physiology , Cyclic GMP/metabolism , Ion Channel Gating , Ion Channels , Potassium/metabolism , Signal Transduction , Spermatozoa/metabolism , Animals , Arbacia/chemistry , Calcium/metabolism , Chemotaxis , Guanylate Cyclase/metabolism , Male
8.
J Gen Physiol ; 124(2): 115-24, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15277573

ABSTRACT

Chemotaxis of sperm is an important step toward fertilization. During chemotaxis, sperm change their swimming behavior in a gradient of the chemoattractant that is released by the eggs, and finally sperm accumulate near the eggs. A well established model to study chemotaxis is the sea urchin Arbacia punctulata. Resact, the chemoattractant of Arbacia, is a peptide that binds to a receptor guanylyl cyclase. The signaling pathway underlying chemotaxis is still poorly understood. Stimulation of sperm with resact induces a variety of cellular events, including a rise in intracellular pH (pHi) and an influx of Ca2+; the Ca2+ entry is essential for the chemotactic behavior. Previous studies proposed that the influx of Ca2+ is initiated by the rise in pHi. According to this proposal, a cGMP-induced hyperpolarization activates a voltage-dependent Na+/H+ exchanger that expels H+ from the cell. Because some aspects of the proposed signaling pathway are inconsistent with recent results (Kaupp, U.B., J. Solzin, J.E. Brown, A. Helbig, V. Hagen, M. Beyermann, E. Hildebrand, and I. Weyand. 2003. Nat. Cell Biol. 5:109-117), we reexamined the role of protons in chemotaxis of sperm using kinetic measurements of the changes in pHi and intracellular Ca2+ concentration. We show that for physiological concentrations of resact (<25 pM), the influx of Ca2+ precedes the rise in pHi. Moreover, buffering of pHi completely abolishes the resact-induced pHi signal, but leaves the Ca2+ signal and the chemotactic motor response unaffected. We conclude that an elevation of pHi is required neither to open Ca(2+)-permeable channels nor to control the chemotactic behavior. Intracellular release of cGMP from a caged compound does not cause an increase in pHi, indicating that the rise in pHi is induced by cellular events unrelated to cGMP itself, but probably triggered by the consumption and subsequent replenishment of GTP. These results show that the resact-induced rise in pHi is not an obligatory step in sperm chemotactic signaling. A rise in pHi is also not required for peptide-induced Ca2+ entry into sperm of the sea urchin Strongylocentrotus purpuratus. Speract, a peptide of S. purpuratus may act as a chemoattractant as well or may serve functions other than chemotaxis.


Subject(s)
Calcium Signaling/physiology , Chemotaxis/physiology , Protons , Spermatozoa/physiology , Animals , Arbacia , Hydrogen-Ion Concentration , Male , Sea Urchins , Strongylocentrotus purpuratus
9.
Nat Cell Biol ; 5(2): 109-17, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12563276

ABSTRACT

The signalling pathway and the behavioural strategy underlying chemotaxis of sperm are poorly understood. We have studied the cellular events and motor responses that mediate chemotaxis of sperm from the sea urchin Arbacia punctulata. Here we show that resact, a chemoattractant peptide, initiates a rapid and transient rise in the concentration of cyclic GMP, followed by a transient influx of Ca2+. The binding of a single resact molecule elicits a Ca2+ response, and 50-100 bound molecules saturate the response. The ability to register single molecules is reminiscent of the single-photon sensitivity of rod photoreceptors. Both resact and cyclic nucleotides cause a turn or brief tumbling in the swimming path of sperm. We conclude that a cGMP-mediated increase in the Ca2+ concentration induces the primary motor response of sperm to the chemoattractant.


Subject(s)
Chemotaxis/physiology , Egg Proteins/metabolism , Guanylate Cyclase , Receptors, Cell Surface/metabolism , Sea Urchins/physiology , Signal Transduction/physiology , Spermatozoa/physiology , Animals , Calcium/metabolism , Cyclic AMP/analogs & derivatives , Cyclic AMP/metabolism , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Male , Molecular Structure , Protein Binding , Sperm Motility , Spermatozoa/cytology , Spermatozoa/metabolism
10.
J Neurophysiol ; 88(4): 1605-13, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12364491

ABSTRACT

Pyramidal cells in the rat hippocampus commonly show place-related activity, but it has been difficult to understand the factors that govern them. A particularly important question is whether individual cells have identifiable correlates that can be manipulated independently of the correlates of other cells. Recently Tanila et al. examined the activity of small ensembles of hippocampal cells in rats running on a plus-maze with distinct intra- and extramaze cues. When the two sets of cues were rotated 90 degrees in opposite directions, some cells followed the intramaze cues, others followed the extramaze cues, and others "remapped" unpredictably; moreover, all possible combinations were seen within simultaneously recorded ensembles. In the current study, CA1 pyramidal cell population activity was recorded from four rats in a similar paradigm, using a recording system that permitted the analysis of ensembles of 4-70 simultaneously recorded units. The results were consistent with the data from the earlier study in showing an increase in remapping over time and in showing some place fields following one of the defined sets of cues while others remapped. When the possibility of random remapping was controlled for, however, the analysis did not show significant numbers of place fields following both sets of cues simultaneously. Furthermore, all rats initially showed fully concordant responses with all place fields following the local cues. For two rats, this pattern continued until a new configuration was introduced at which time all fields switched to follow the distal cues. Taken together, the results are difficult to reconcile with the hypothesis that individual hippocampal cells encode information about different subsets of cues in the environment.


Subject(s)
Hippocampus/cytology , Hippocampus/physiology , Pyramidal Cells/physiology , Space Perception/physiology , Animals , Electrophysiology , Male , Maze Learning/physiology , Memory/physiology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...