Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Innov ; 17(2): 269-282, 2022.
Article in English | MEDLINE | ID: mdl-35677914

ABSTRACT

Since the US Food and Drug Administration (FDA) began monitoring the quality of pharmaceutical manufacturing by enforcing current good manufacturing practices roughly 60 years ago, forces related to the global economy have changed, rendering the task of monitoring quality more difficult. Alternative strategies by groups like Valisure, LLC, and the University of Kentucky Drug Quality Study to monitor the quality of the currently circulated US drug supply through end-product testing and screening have resulted in several concerning findings. Given the successful approaches of identifying quality defects in pharmaceuticals by non-regulatory bodies, and considering the changing landscape and pressures on manufacturing, the FDA, large buying groups, and the US Department of Defense should consider these alternative strategies as a means to augment current regulatory activities.

2.
Mol Ecol Resour ; 11(4): 725-32, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21457480

ABSTRACT

We developed and tested 14 new polymorphic microsatellite loci for dreissenid mussels, including the two species that have invaded many freshwater habitats in Eurasia and North America, where they cause serious industrial fouling damage and ecological alterations. These new loci will aid our understanding of their genetic patterns in invasive populations as well as throughout their native Ponto-Caspian distributions. Eight new loci for the zebra mussel Dreissena polymorpha polymorpha and six for the quagga mussel D. rostriformis bugensis were compared with new results from six previously published loci to generate a robust molecular toolkit for dreissenid mussels and their relatives. Taxa tested include D. p. polymorpha, D. r. bugensis, D. r. grimmi, D. presbensis, the 'living fossil'Congeria kusceri, and the dark false mussel Mytilopsis leucophaeata (the latter also is invasive). Overall, most of the 24 zebra mussel (N = 583) and 13 quagga mussel (N = 269) population samples conformed to Hardy-Weinberg equilibrium expectations for the new loci following sequential Bonferroni correction. The 11 loci (eight new, three previously published) evaluated for D. p. polymorpha averaged 35.1 alleles and 0.72 mean observed heterozygosity per locus, and 25.3 and 0.75 for the nine loci (six new, three previously published) developed for D. r. bugensis. All but three of these loci successfully amplified the other species of Dreissena, and all but one also amplified Congeria and Mytilopsis. All species and populations tested were significantly divergent using the microsatellite data, with neighbour-joining trees reflecting their evolutionary relationships; our results reveal broad utility for resolving their biogeographic, evolutionary, population and ecological patterns.


Subject(s)
Bivalvia/classification , Bivalvia/genetics , Microsatellite Repeats , Polymerase Chain Reaction/methods , Animals , Asia , Biological Evolution , DNA Primers/genetics , Europe , Genetics, Population/methods , Molecular Sequence Data , North America , Phylogeography/methods , Sequence Analysis, DNA
3.
Mol Ecol ; 18(1): 64-79, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19140965

ABSTRACT

The Eurasian round goby Neogobius melanostomus (Apollonia melanostoma) invaded the North American Great Lakes in 1990 through ballast water, spread rapidly, and now is widely distributed and moving through adjacent tributaries. We analyse its genetic diversity and divergence patterns among 25 North American (N = 744) and 22 Eurasian (N = 414) locations using mitochondrial DNA cytochrome b gene sequences and seven nuclear microsatellite loci in order to: (i) identify the invasion's founding source(s), (ii) test for founder effects, (iii) evaluate whether the invasive range is genetically heterogeneous, and (iv) determine whether fringe and central areas differ in genetic diversity. Tests include F(ST) analogues, neighbour-joining trees, haplotype networks, Bayesian assignment, Monmonier barrier analysis, and three-dimensional factorial correspondence analysis. We recovered 13 cytochrome b haplotypes and 232 microsatellite alleles in North America and compared these to variation we previously described across Eurasia. Results show: (i) the southern Dnieper River population was the primary Eurasian donor source for the round goby's invasion of North America, likely supplemented by some alleles from the Dniester and Southern Bug rivers, (ii) the overall invasion has high genetic diversity and experienced no founder effect, (iii) there is significant genetic structuring across North America, and (iv) some expansion areas show reduced numbers of alleles, whereas others appear to reflect secondary colonization. Sampling sites in Lake Huron's Saginaw Bay and Lake Ontario significantly differ from all others, having unique alleles that apparently originated from separate introductions. Substantial genetic variation, multiple founding sources, large number of propagules, and population structure thus likely aided the goby's ecological success.


Subject(s)
Genetic Variation , Genetics, Population , Perciformes/genetics , Alleles , Animals , Cytochromes b/genetics , DNA, Mitochondrial/genetics , Ecosystem , Founder Effect , Geography , Great Lakes Region , Haplotypes , Microsatellite Repeats , Phylogeny , Population Dynamics , Sequence Analysis, DNA
4.
Mol Ecol Resour ; 9(2): 639-44, 2009 Mar.
Article in English | MEDLINE | ID: mdl-21564715

ABSTRACT

We developed and tested eight polymorphic microsatellite loci for Ponto-Caspian 'neogobiin' gobies, many of which are invasive in Eurasia and North America, whose study will aid understanding of the population genetics underlying their success. We tested samples from one to two locations from 12 taxa in the recently revised genera Babka, Benthophilus, Mesogobius, Neogobius = Apollonia, Ponticola and Proterorhinus; including the bighead, Caspian, knout, monkey, racer, round, tadpole and tubenose gobies; and taxa from introduced vs. native populations, those diverging between fresh and marine waters, and those differentiated between the Black and Caspian Seas. Populations conformed to Hardy-Weinberg equilibrium expectations, averaging five to 15 alleles per locus and 0.11 to 0.67 mean heterozygosity. Allelic variation significantly differentiated among all taxa and populations.

5.
Mol Ecol ; 17(11): 2598-615, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18466236

ABSTRACT

During the past two decades, the round goby Apollonia melanostoma (=Neogobius melanostomus) has expanded its range via shipping transport and canals, extending north and west from the Ponto-Caspian region of Eurasia and to the North American Great Lakes. Exotic populations of the round goby have been very successful in the Baltic Sea and the Great Lakes regions, exerting significant ecological changes. Our study evaluates the population genetic and biogeographical structure of the round goby across its native and nonindigenous ranges, in light of geological history and its expansion pathways. We analyzed seven new nuclear microsatellite loci and mitochondrial DNA cytochrome b gene sequences from 432 individuals in 22 locations. Population structure was tested using F(ST)-analogs, phylogenetic trees, clustering diagrams, Bayesian assignment tests and nested clade analyses. Results show that native populations in the Black vs. the Caspian Sea basins diverge by 1.4% and c. 350,000 years, corresponding to closure of their prior connections and supporting the taxonomic separation of the Black Sea A. m. melanostoma from the Caspian Sea A. m. affinis. Their within-basin populations diverge by approximately 0.4% and 100,000 years. Nonindigenous populations in the Baltic Sea and Danube and Dnieper Rivers trace to separate northern Black Sea origins, whereas the upper Volga River system houses mixed populations of A. m. melanostoma and A. m. affinis. Native populations average twice the genetic diversity of most exotic sites; however, sites in the Volga River system have high diversity due to mixing of the two taxa. Our results highlight how vicariance and anthropogenic disturbances have shaped a rapidly expanding species' genetic heritage.


Subject(s)
Perciformes/genetics , Phylogeny , Animals , Asia , Cytochromes b/genetics , DNA, Mitochondrial/genetics , Europe , Genetic Variation , Genetics, Population , Geography , Microsatellite Repeats/genetics , Molecular Sequence Data , Oceans and Seas , Sequence Analysis, DNA
6.
Risk Anal ; 25(4): 1043-60, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16268948

ABSTRACT

Combining DNA variation data and risk assessment procedures offers important diagnostic and monitoring tools for evaluating the relative success of exotic species invasions. Risk assessment may allow us to understand how the numbers of founding individuals, genetic variants, population sources, and introduction events affect successful establishment and spread. This is particularly important in habitats that are "hotbeds" for invasive species--such as the North American Great Lakes. This study compares genetic variability and its application to risk assessment within and among three Eurasian groups and five species that successfully invaded the Great Lakes during the mid 1980s through early 1990s; including zebra and quagga mussels, round and tubenose gobies, and the ruffe. DNA sequences are compared from exotic and native populations in order to evaluate the role of genetic diversity in invasions. Close relatives are also examined, since they often invade in concert and several are saline tolerant and are likely to spread to North American estuaries. Results show that very high genetic diversity characterizes the invasions of all five species, indicating that they were founded by very large numbers of propagules and underwent no founder effects. Genetic evidence points to multiple invasion sources for both dreissenid and goby species, which appears related to especially rapid spread and widespread colonization success in a variety of habitats. In contrast, results show that the ruffe population in the Great Lakes originated from a single founding population source from the Elbe River drainage. Both the Great Lakes and the Elbe River populations of ruffe have similar genetic diversity levels--showing no founder effect, as in the other invasive species. In conclusion, high genetic variability, large numbers of founders, and multiple founding sources likely significantly contribute to the risk of an exotic species introduction's success and persistence.


Subject(s)
Ecosystem , Marine Biology , Animals , Asia , Bivalvia/genetics , Europe , Founder Effect , Fresh Water , Genetic Variation , Genetics, Population , North America , Perches/genetics , Perciformes/genetics , Population Dynamics , Risk
SELECTION OF CITATIONS
SEARCH DETAIL
...