Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Cell Rep ; 43(7): 114417, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38980795

ABSTRACT

The ability to sense and respond to osmotic fluctuations is critical for the maintenance of cellular integrity. We used gene co-essentiality analysis to identify an unappreciated relationship between TSC22D2, WNK1, and NRBP1 in regulating cell volume homeostasis. All of these genes have paralogs and are functionally buffered for osmo-sensing and cell volume control. Within seconds of hyperosmotic stress, TSC22D, WNK, and NRBP family members physically associate into biomolecular condensates, a process that is dependent on intrinsically disordered regions (IDRs). A close examination of these protein families across metazoans revealed that TSC22D genes evolved alongside a domain in NRBPs that specifically binds to TSC22D proteins, which we have termed NbrT (NRBP binding region with TSC22D), and this co-evolution is accompanied by rapid IDR length expansion in WNK-family kinases. Our study reveals that TSC22D, WNK, and NRBP genes evolved in metazoans to co-regulate rapid cell volume changes in response to osmolarity.

2.
Heliyon ; 9(1): e12744, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36597481

ABSTRACT

SARS-CoV-2 depends on host cell components for infection and replication. Identification of virus-host dependencies offers an effective way to elucidate mechanisms involved in viral infection and replication. If druggable, host factor dependencies may present an attractive strategy for anti-viral therapy. In this study, we performed genome wide CRISPR knockout screens in Vero E6 cells and four human cell lines including Calu-3, UM-UC-4, HEK-293 and HuH-7 to identify genetic regulators of SARS-CoV-2 infection. Our findings identified only ACE2, the cognate SARS-CoV-2 entry receptor, as a common host dependency factor across all cell lines, while other host genes identified were largely cell line specific, including known factors TMPRSS2 and CTSL. Several of the discovered host-dependency factors converged on pathways involved in cell signalling, immune-related pathways, and chromatin modification. Notably, the chromatin modifier gene KMT2C in Calu-3 cells had the strongest impact in preventing SARS-CoV-2 infection when perturbed.

3.
Cancer Cell ; 40(12): 1488-1502.e7, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36368321

ABSTRACT

MYC-driven medulloblastoma (MB) is an aggressive pediatric brain tumor characterized by therapy resistance and disease recurrence. Here, we integrated data from unbiased genetic screening and metabolomic profiling to identify multiple cancer-selective metabolic vulnerabilities in MYC-driven MB tumor cells, which are amenable to therapeutic targeting. Among these targets, dihydroorotate dehydrogenase (DHODH), an enzyme that catalyzes de novo pyrimidine biosynthesis, emerged as a favorable candidate for therapeutic targeting. Mechanistically, DHODH inhibition acts on target, leading to uridine metabolite scarcity and hyperlipidemia, accompanied by reduced protein O-GlcNAcylation and c-Myc degradation. Pyrimidine starvation evokes a metabolic stress response that leads to cell-cycle arrest and apoptosis. We further show that an orally available small-molecule DHODH inhibitor demonstrates potent mono-therapeutic efficacy against patient-derived MB xenografts in vivo. The reprogramming of pyrimidine metabolism in MYC-driven medulloblastoma represents an unappreciated therapeutic strategy and a potential new class of treatments with stronger cancer selectivity and fewer neurotoxic sequelae.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Child , Humans , Medulloblastoma/drug therapy , Medulloblastoma/genetics , Medulloblastoma/metabolism , Dihydroorotate Dehydrogenase , Cell Line, Tumor , Neoplasm Recurrence, Local , Pyrimidines/therapeutic use , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/metabolism
4.
Commun Biol ; 5(1): 1142, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36307536

ABSTRACT

Single-cell RNA-sequencing (scRNA-seq) offers functional insight into complex biology, allowing for the interrogation of cellular populations and gene expression programs at single-cell resolution. Here, we introduce scPipeline, a single-cell data analysis toolbox that builds on existing methods and offers modular workflows for multi-level cellular annotation and user-friendly analysis reports. Advances to scRNA-seq annotation include: (i) co-dependency index (CDI)-based differential expression, (ii) cluster resolution optimization using a marker-specificity criterion, (iii) marker-based cell-type annotation with Miko scoring, and (iv) gene program discovery using scale-free shared nearest neighbor network (SSN) analysis. Both unsupervised and supervised procedures were validated using a diverse collection of scRNA-seq datasets and illustrative examples of cellular transcriptomic annotation of developmental and immunological scRNA-seq atlases are provided herein. Overall, scPipeline offers a flexible computational framework for in-depth scRNA-seq analysis.


Subject(s)
Gene Expression Profiling , Transcriptome , Sequence Analysis, RNA/methods , Gene Expression Profiling/methods , Software , Single-Cell Analysis/methods
5.
Cell Rep ; 40(13): 111420, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36170831

ABSTRACT

Recurrence of solid tumors renders patients vulnerable to advanced, treatment-refractory disease state with mutational and oncogenic landscape distinctive from initial diagnosis. Improving outcomes for recurrent cancers requires a better understanding of cell populations that expand from the post-therapy, minimal residual disease (MRD) state. We profile barcoded tumor stem cell populations through therapy at tumor initiation, MRD, and recurrence in our therapy-adapted, patient-derived xenograft models of glioblastoma (GBM). Tumors show distinct patterns of recurrence in which clonal populations exhibit either a pre-existing fitness advantage or an equipotency fitness acquired through therapy. Characterization of the MRD state by single-cell and bulk RNA sequencing reveals a tumor-intrinsic immunomodulatory signature with prognostic significance at the transcriptomic level and in proteomic analysis of cerebrospinal fluid (CSF) collected from patients with GBM. Our results provide insight into the innate and therapy-driven dynamics of human GBM and the prognostic value of interrogating the MRD state in solid cancers.


Subject(s)
Brain Neoplasms , Glioblastoma , Brain Neoplasms/pathology , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Neoplasm, Residual/genetics , Neoplastic Stem Cells/pathology , Proteomics
6.
Mol Cell ; 82(16): 2982-2999.e14, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35914530

ABSTRACT

Alternative splicing (AS) is a critical regulatory layer; yet, factors controlling functionally coordinated splicing programs during developmental transitions are poorly understood. Here, we employ a screening strategy to identify factors controlling dynamic splicing events important for mammalian neurogenesis. Among previously unknown regulators, Rbm38 acts widely to negatively control neural AS, in part through interactions mediated by the established repressor of splicing, Ptbp1. Puf60, a ubiquitous factor, is surprisingly found to promote neural splicing patterns. This activity requires a conserved, neural-differential exon that remodels Puf60 co-factor interactions. Ablation of this exon rewires distinct AS networks in embryonic stem cells and at different stages of mouse neurogenesis. Single-cell transcriptome analyses further reveal distinct roles for Rbm38 and Puf60 isoforms in establishing neuronal identity. Our results describe important roles for previously unknown regulators of neurogenesis and establish how an alternative exon in a widely expressed splicing factor orchestrates temporal control over cell differentiation.


Subject(s)
Neurogenesis , RNA Splicing , Alternative Splicing , Animals , Exons/genetics , Mammals , Mice , Neurogenesis/genetics , Neurons , RNA-Binding Proteins/genetics
7.
Cancer Discov ; 12(4): 1022-1045, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34911733

ABSTRACT

Resistance to targeted therapies is an important clinical problem in HER2-positive (HER2+) breast cancer. "Drug-tolerant persisters" (DTP), a subpopulation of cancer cells that survive via reversible, nongenetic mechanisms, are implicated in resistance to tyrosine kinase inhibitors (TKI) in other malignancies, but DTPs following HER2 TKI exposure have not been well characterized. We found that HER2 TKIs evoke DTPs with a luminal-like or a mesenchymal-like transcriptome. Lentiviral barcoding/single-cell RNA sequencing reveals that HER2+ breast cancer cells cycle stochastically through a "pre-DTP" state, characterized by a G0-like expression signature and enriched for diapause and/or senescence genes. Trajectory analysis/cell sorting shows that pre-DTPs preferentially yield DTPs upon HER2 TKI exposure. Cells with similar transcriptomes are present in HER2+ breast tumors and are associated with poor TKI response. Finally, biochemical experiments indicate that luminal-like DTPs survive via estrogen receptor-dependent induction of SGK3, leading to rewiring of the PI3K/AKT/mTORC1 pathway to enable AKT-independent mTORC1 activation. SIGNIFICANCE: DTPs are implicated in resistance to anticancer therapies, but their ontogeny and vulnerabilities remain unclear. We find that HER2 TKI-DTPs emerge from stochastically arising primed cells ("pre-DTPs") that engage either of two distinct transcriptional programs upon TKI exposure. Our results provide new insights into DTP ontogeny and potential therapeutic vulnerabilities. This article is highlighted in the In This Issue feature, p. 873.


Subject(s)
Breast Neoplasms , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Drug Resistance, Neoplasm , Female , Humans , Phosphatidylinositol 3-Kinases/metabolism , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Signal Transduction
8.
Neurooncol Adv ; 3(1): vdab144, 2021.
Article in English | MEDLINE | ID: mdl-34765972

ABSTRACT

BACKGROUND: Glioblastoma (GBM), the most common and aggressive primary brain tumour in adults, has been classified into three subtypes: classical, mesenchymal, and proneural. While the original classification relied on an 840 gene-set, further clarification on true GBM subtypes uses a 150-gene signature to accurately classify GBM into the three subtypes. We hypothesized whether a machine learning approach could be used to identify a smaller gene-set to accurately predict GBM subtype. METHODS: Using a supervised machine learning approach, extreme gradient boosting (XGBoost), we developed a classifier to predict the three subtypes of glioblastoma (GBM): classical, mesenchymal, and proneural. We tested the classifier on in-house GBM tissue, cell lines, and xenograft samples to predict their subtype. RESULTS: We identified the five most important genes for characterizing the three subtypes based on genes that often exhibited high Importance Scores in our XGBoost analyses. On average, this approach achieved 80.12% accuracy in predicting these three subtypes of GBM. Furthermore, we applied our five-gene classifier to successfully predict the subtype of GBM samples at our centre. CONCLUSION: Our 5-gene set classifier is the smallest classifier to date that can predict GBM subtypes with high accuracy, which could facilitate the future development of a five-gene subtype diagnostic biomarker for routine assays in GBM samples.

9.
Nat Protoc ; 16(10): 4766-4798, 2021 10.
Article in English | MEDLINE | ID: mdl-34508259

ABSTRACT

The continued improvement of combinatorial CRISPR screening platforms necessitates the development of new computational pipelines for scoring combinatorial screening data. Unlike for single-guide RNA (sgRNA) pooled screening platforms, combinatorial scoring for multiplexed systems is confounded by guide design parameters such as the number of gRNAs per construct, the position of gRNAs along constructs, and additional features that may impact gRNA expression, processing or capture. In this protocol we describe Orthrus, an R package for processing, scoring and analyzing combinatorial CRISPR screening data that addresses these challenges. This protocol walks through the application of Orthrus to previously published combinatorial screening data from the CHyMErA experimental system, a platform we recently developed that pairs Cas9 with Cas12a gRNAs and enables programmed targeting of multiple genomic sites. We demonstrate Orthrus' features for screen quality assessment and two distinct scoring modes for dual guide RNAs (dgRNAs) that target the same gene twice or dgRNAs that target two different genes. Running Orthrus requires basic R programming experience, ~5-10 min of computational time and 15-60 min total.


Subject(s)
CRISPR-Cas Systems , RNA, Guide, Kinetoplastida , Gene Editing
10.
Sci Adv ; 7(19)2021 05.
Article in English | MEDLINE | ID: mdl-33962950

ABSTRACT

There is an urgent need to identify vulnerabilities in pancreatic ductal adenocarcinoma (PDAC). PDAC cells acquire metabolic changes that augment NADPH production and cytosolic redox homeostasis. Here, we show that high NADPH levels drive activity of NADPH oxidase 4 (NOX4) expressed in the endoplasmic reticulum (ER) membrane. NOX4 produces H2O2 metabolized by peroxiredoxin 4 (PRDX4) in the ER lumen. Using functional genomics and subsequent in vitro and in vivo validations, we find that PDAC cell lines with high NADPH levels are dependent on PRDX4 for their growth and survival. PRDX4 addiction is associated with increased reactive oxygen species, a DNA-PKcs-governed DNA damage response and radiosensitivity, which can be rescued by depletion of NOX4 or NADPH. Hence, this study has identified NOX4 as a protein that paradoxically converts the reducing power of the cytosol to an ER-specific oxidative stress vulnerability in PDAC that may be therapeutically exploited by targeting PRDX4.


Subject(s)
Hydrogen Peroxide , Pancreatic Neoplasms , Endoplasmic Reticulum/metabolism , Humans , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , NADP/metabolism , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism , Oxidation-Reduction , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Peroxiredoxins/genetics , Peroxiredoxins/metabolism , Reactive Oxygen Species/metabolism
11.
Mol Syst Biol ; 17(5): e10013, 2021 05.
Article in English | MEDLINE | ID: mdl-34018332

ABSTRACT

We present FLEX (Functional evaluation of experimental perturbations), a pipeline that leverages several functional annotation resources to establish reference standards for benchmarking human genome-wide CRISPR screen data and methods for analyzing them. FLEX provides a quantitative measurement of the functional information captured by a given gene-pair dataset and a means to explore the diversity of functions captured by the input dataset. We apply FLEX to analyze data from the diverse cell line screens generated by the DepMap project. We identify a predominant mitochondria-associated signal within co-essentiality networks derived from these data and explore the basis of this signal. Our analysis and time-resolved CRISPR screens in a single cell line suggest that the variable phenotypes associated with mitochondria genes across cells may reflect screen dynamics and protein stability effects rather than genetic dependencies. We characterize this functional bias and demonstrate its relevance for interpreting differential hits in any CRISPR screening context. More generally, we demonstrate the utility of the FLEX pipeline for performing robust comparative evaluations of CRISPR screens or methods for processing them.


Subject(s)
Gene Regulatory Networks , Genetic Testing/methods , Mitochondria/genetics , Systems Biology/methods , Algorithms , Benchmarking , Bias , CRISPR-Cas Systems , Cell Line , HEK293 Cells , Humans
12.
J Clin Invest ; 131(7)2021 04 01.
Article in English | MEDLINE | ID: mdl-33561012

ABSTRACT

Ovarian cancer (OC) is the most deadly gynecological malignancy, with unmet clinical need for new therapeutic approaches. The relaxin peptide is a pleiotropic hormone with reproductive functions in the ovary. Relaxin induces cell growth in several types of cancer, but the role of relaxin in OC is poorly understood. Here, using cell lines and xenograft models, we demonstrate that relaxin and its associated GPCR RXFP1 form an autocrine signaling loop essential for OC in vivo tumorigenesis, cell proliferation, and viability. We determined that relaxin signaling activates expression of prooncogenic pathways, including RHO, MAPK, Wnt, and Notch. We found that relaxin is detectable in patient-derived OC tumors, ascites, and serum. Further, inflammatory cytokines IL-6 and TNF-α activated transcription of relaxin via recruitment of STAT3 and NF-κB to the proximal promoter, initiating an autocrine feedback loop that potentiated expression. Inhibition of RXFP1 or relaxin increased cisplatin sensitivity of OC cell lines and abrogated in vivo tumor formation. Finally, we demonstrate that a relaxin-neutralizing antibody reduced OC cell viability and sensitized cells to cisplatin. Collectively, these data identify the relaxin/RXFP1 autocrine loop as a therapeutic vulnerability in OC.


Subject(s)
Autocrine Communication , Carcinogenesis/metabolism , MAP Kinase Signaling System , Neoplasm Proteins/metabolism , Ovarian Neoplasms/metabolism , Relaxin/metabolism , Wnt Signaling Pathway , Animals , Cell Line, Tumor , Female , Humans , Mice , Ovarian Neoplasms/pathology , Ovarian Neoplasms/therapy
13.
Cell ; 184(1): 226-242.e21, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33417860

ABSTRACT

Cancer cells enter a reversible drug-tolerant persister (DTP) state to evade death from chemotherapy and targeted agents. It is increasingly appreciated that DTPs are important drivers of therapy failure and tumor relapse. We combined cellular barcoding and mathematical modeling in patient-derived colorectal cancer models to identify and characterize DTPs in response to chemotherapy. Barcode analysis revealed no loss of clonal complexity of tumors that entered the DTP state and recurred following treatment cessation. Our data fit a mathematical model where all cancer cells, and not a small subpopulation, possess an equipotent capacity to become DTPs. Mechanistically, we determined that DTPs display remarkable transcriptional and functional similarities to diapause, a reversible state of suspended embryonic development triggered by unfavorable environmental conditions. Our study provides insight into how cancer cells use a developmentally conserved mechanism to drive the DTP state, pointing to novel therapeutic opportunities to target DTPs.


Subject(s)
Antineoplastic Agents/therapeutic use , Colorectal Neoplasms/drug therapy , Diapause , Drug Resistance, Neoplasm , Animals , Antineoplastic Agents/pharmacology , Autophagy/drug effects , Autophagy/genetics , Cell Line, Tumor , Clone Cells , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Drug Resistance, Neoplasm/drug effects , Embryo, Mammalian/drug effects , Embryo, Mammalian/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Genetic Heterogeneity/drug effects , Humans , Irinotecan/pharmacology , Irinotecan/therapeutic use , Mice, Inbred NOD , Mice, SCID , Models, Biological , Signal Transduction/drug effects , Up-Regulation/drug effects , Up-Regulation/genetics , Xenograft Model Antitumor Assays
14.
Cancers (Basel) ; 12(11)2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33138032

ABSTRACT

PTEN mutation occurs in a variety of aggressive cancers and is associated with poor patient outcomes. Recent studies have linked mutational loss of PTEN to reduced RAD51 expression and function, a key factor involved in the homologous recombination (HR) pathway. However, these studies remain controversial, as they fail to establish a definitive causal link to RAD51 expression that is PTEN-dependent, while other studies have not been able to recapitulate the relationship between the PTEN expression and the RAD51/HR function. Resolution of this apparent conundrum is essential due to the clinically-significant implication that PTEN-deficient tumors may be sensitive to poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) commonly used in the clinical management of BRCA-mutated and other HR-deficient (HRD) tumors. METHODS: Primary Pten-deficient (and corresponding wild-type) mouse embryonic fibroblasts (MEFs) and astrocytes and PTEN-null human tumor cell lines and primary cells were assessed for RAD51 expression (via the Western blot analysis) and DNA damage repair analyses (via alkali comet and γH2AX foci assays). RAD51 foci analysis was used to measure HR-dependent DNA repair. Xrcc2-deficient MEFs served as an HR-deficient control, while the stable knockdown of RAD51 (shRAD51) served to control for the relative RAD51/HR-mediated repair and the phospho-53BP1 foci analysis served to confirm and measure non-homologous end joining (NHEJ) activity in PTEN-deficient and shRAD51-expressing (HRD) lines. Cell proliferation studies were used to measure any potential added sensitivity of PTEN-null cells to the clinically-relevant PARPi, olaparib. RAD51 levels and DNA damage response signaling were assessed in PTEN-mutant brain tumor initiating cells (BTICs) derived from primary and recurrent glioblastoma multiforme (GBM) patients, while expression of RAD51 and its paralogs were examined as a function of the PTEN status in the RNA expression datasets isolated from primary GBM tumor specimens and BTICs. RESULTS: Pten knockout primary murine cells display unaltered RAD51 expression, endogenous and DNA strand break-induced RAD51 foci and robust DNA repair activity. Defective HR was only observed in the cells lacking Xrcc2. Likewise, human glioblastoma multiforme (GBM) cell lines with known PTEN deficiency (U87, PTEN-mutated; U251 and U373, PTEN-null) show apparent expression of RAD51 and display efficient DNA repair activity. Only GBM cells stably expressing shRNAs against RAD51 (shRAD51) display dysfunctional DNA repair activity and reduced proliferative capacity, which is exacerbated by PARPi treatment. Furthermore, GBM patient-derived BTICs displayed robust RAD51 expression and intact DNA damage response signaling in spite of PTEN-inactivating mutations. RNA expression analysis of primary GBM tissue specimens and BTICs demonstrate stable levels of RAD51 and its paralogs (RAD51B, RAD51C, RAD51D, XRCC2, XRCC3, and DMC1), regardless of the PTEN mutational status. CONCLUSIONS: Our findings demonstrate definitively that PTEN loss does not alter the RAD51 expression, its paralogs, or the HR activity. Furthermore, deficiency in PTEN alone is not sufficient to impart enhanced sensitivity to PARPi associated with HRD. This study is the first to unequivocally demonstrate that PTEN deficiency is not linked to the RAD51 expression or the HR activity amongst primary neural and non-neural Pten-null cells, PTEN-deficient tumor cell lines, and primary PTEN-mutant GBM patient-derived tissue specimens and BTICs.

15.
Nat Commun ; 11(1): 4673, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32938917

ABSTRACT

RAS-MAPK signaling mediates processes critical to normal development including cell proliferation, survival, and differentiation. Germline mutation of RAS-MAPK genes lead to the Noonan-spectrum of syndromes. Here, we present a patient affected by a 6p-interstitial microdeletion with unknown underlying molecular etiology. Examination of 6p-interstitial microdeletion cases reveals shared clinical features consistent with Noonan-spectrum disorders including short stature, facial dysmorphia and cardiovascular abnormalities. We find the RAS-responsive element binding protein-1 (RREB1) is the common deleted gene in multiple 6p-interstitial microdeletion cases. Rreb1 hemizygous mice display orbital hypertelorism and cardiac hypertrophy phenocopying the human syndrome. Rreb1 haploinsufficiency leads to sensitization of MAPK signaling. Rreb1 recruits Sin3a and Kdm1a to control H3K4 methylation at MAPK pathway gene promoters. Haploinsufficiency of SIN3A and mutations in KDM1A cause syndromes similar to RREB1 haploinsufficiency suggesting genetic perturbation of the RREB1-SIN3A-KDM1A complex represents a new category of RASopathy-like syndromes arising through epigenetic reprogramming of MAPK pathway genes.


Subject(s)
DNA-Binding Proteins/genetics , Haploinsufficiency , MAP Kinase Signaling System/genetics , Noonan Syndrome/etiology , Transcription Factors/genetics , ras Proteins/metabolism , Abnormalities, Multiple/genetics , Animals , Chromosome Deletion , Chromosomes, Human, Pair 6 , DNA-Binding Proteins/metabolism , Epigenesis, Genetic , Female , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Histone Demethylases/genetics , Histone Demethylases/metabolism , Histones/metabolism , Humans , Male , Methylation , Mice, Inbred C57BL , Mice, Knockout , Sin3 Histone Deacetylase and Corepressor Complex/genetics , Sin3 Histone Deacetylase and Corepressor Complex/metabolism , Transcription Factors/metabolism , ras Proteins/genetics
16.
Nature ; 586(7827): 120-126, 2020 10.
Article in English | MEDLINE | ID: mdl-32968282

ABSTRACT

The genetic circuits that allow cancer cells to evade destruction by the host immune system remain poorly understood1-3. Here, to identify a phenotypically robust core set of genes and pathways that enable cancer cells to evade killing mediated by cytotoxic T lymphocytes (CTLs), we performed genome-wide CRISPR screens across a panel of genetically diverse mouse cancer cell lines that were cultured in the presence of CTLs. We identify a core set of 182 genes across these mouse cancer models, the individual perturbation of which increases either the sensitivity or the resistance of cancer cells to CTL-mediated toxicity. Systematic exploration of our dataset using genetic co-similarity reveals the hierarchical and coordinated manner in which genes and pathways act in cancer cells to orchestrate their evasion of CTLs, and shows that discrete functional modules that control the interferon response and tumour necrosis factor (TNF)-induced cytotoxicity are dominant sub-phenotypes. Our data establish a central role for genes that were previously identified as negative regulators of the type-II interferon response (for example, Ptpn2, Socs1 and Adar1) in mediating CTL evasion, and show that the lipid-droplet-related gene Fitm2 is required for maintaining cell fitness after exposure to interferon-γ (IFNγ). In addition, we identify the autophagy pathway as a conserved mediator of the evasion of CTLs by cancer cells, and show that this pathway is required to resist cytotoxicity induced by the cytokines IFNγ and TNF. Through the mapping of cytokine- and CTL-based genetic interactions, together with in vivo CRISPR screens, we show how the pleiotropic effects of autophagy control cancer-cell-intrinsic evasion of killing by CTLs and we highlight the importance of these effects within the tumour microenvironment. Collectively, these data expand our knowledge of the genetic circuits that are involved in the evasion of the immune system by cancer cells, and highlight genetic interactions that contribute to phenotypes associated with escape from killing by CTLs.


Subject(s)
Genome/genetics , Genomics , Neoplasms/genetics , Neoplasms/immunology , T-Lymphocytes, Cytotoxic/immunology , Tumor Escape/genetics , Tumor Escape/immunology , Animals , Autophagy , Cell Line, Tumor , Female , Genes, Neoplasm/genetics , Humans , Interferon-gamma/immunology , Male , Mice , NF-kappa B/metabolism , Reproducibility of Results , Signal Transduction
17.
Nat Metab ; 2(6): 499-513, 2020 06.
Article in English | MEDLINE | ID: mdl-32694731

ABSTRACT

The de novo synthesis of fatty acids has emerged as a therapeutic target for various diseases, including cancer. Because cancer cells are intrinsically buffered to combat metabolic stress, it is important to understand how cells may adapt to the loss of de novo fatty acid biosynthesis. Here, we use pooled genome-wide CRISPR screens to systematically map genetic interactions (GIs) in human HAP1 cells carrying a loss-of-function mutation in fatty acid synthase (FASN), whose product catalyses the formation of long-chain fatty acids. FASN-mutant cells show a strong dependence on lipid uptake that is reflected in negative GIs with genes involved in the LDL receptor pathway, vesicle trafficking and protein glycosylation. Further support for these functional relationships is derived from additional GI screens in query cell lines deficient in other genes involved in lipid metabolism, including LDLR, SREBF1, SREBF2 and ACACA. Our GI profiles also identify a potential role for the previously uncharacterized gene C12orf49 (which we call LUR1) in regulation of exogenous lipid uptake through modulation of SREBF2 signalling in response to lipid starvation. Overall, our data highlight the genetic determinants underlying the cellular adaptation associated with loss of de novo fatty acid synthesis and demonstrate the power of systematic GI mapping for uncovering metabolic buffering mechanisms in human cells.


Subject(s)
Fatty Acids/biosynthesis , Lipid Metabolism/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , CRISPR-Cas Systems , Cell Line , Chromosome Mapping , Fatty Acid Synthase, Type I/genetics , Fatty Acid Synthase, Type I/metabolism , Humans , Lipogenesis/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Signal Transduction , Starvation/genetics , Starvation/metabolism , Sterol Regulatory Element Binding Protein 2/genetics , Sterol Regulatory Element Binding Protein 2/metabolism
18.
Oncogene ; 39(31): 5338-5357, 2020 07.
Article in English | MEDLINE | ID: mdl-32572160

ABSTRACT

Local intravitreal or intra-arterial chemotherapy has improved therapeutic success for the pediatric cancer retinoblastoma (RB), but toxicity remains a major caveat. RB initiates primarily with RB1 loss or, rarely, MYCN amplification, but the critical downstream networks are incompletely understood. We set out to uncover perturbed molecular hubs, identify synergistic drug combinations to target these vulnerabilities, and expose and overcome drug resistance. We applied dynamic transcriptomic analysis to identify network hubs perturbed in RB versus normal fetal retina, and performed in vivo RNAi screens in RB1null and RB1wt;MYCNamp orthotopic xenografts to pinpoint essential hubs. We employed in vitro and in vivo studies to validate hits, define mechanism, develop new therapeutic modalities, and understand drug resistance. We identified BRCA1 and RAD51 as essential for RB cell survival. Their oncogenic activity was independent of BRCA1 functions in centrosome, heterochromatin, or ROS regulation, and instead linked to DNA repair. RAD51 depletion or inhibition with the small molecule inhibitor, B02, killed RB cells in a Chk1/Chk2/p53-dependent manner. B02 further synergized with clinically relevant topotecan (TPT) to engage this pathway, activating p53-BAX mediated killing of RB but not human retinal progenitor cells. Paradoxically, a B02/TPT-resistant tumor exhibited more DNA damage than sensitive RB cells. Resistance reflected dominance of the p53-p21 axis, which mediated cell cycle arrest instead of death. Deleting p21 or applying the BCL2/BCL2L1 inhibitor Navitoclax re-engaged the p53-BAX axis, and synergized with B02, TPT or both to override resistance. These data expose new synergistic therapies to trigger p53-induced killing in diverse RB subtypes.


Subject(s)
Genomics/methods , Retinoblastoma/therapy , Animals , Humans , Mice , Retinoblastoma/genetics
19.
Cancers (Basel) ; 12(5)2020 May 15.
Article in English | MEDLINE | ID: mdl-32429240

ABSTRACT

Epithelial ovarian cancer (EOC) has a unique mode of metastasis, where cells shed from the primary tumour, form aggregates called spheroids to evade anoikis, spread through the peritoneal cavity, and adhere to secondary sites. We previously showed that the master kinase Liver kinase B1 (LKB1) is required for EOC spheroid viability and metastasis. We have identified novel (nua) kinase 1 (NUAK1) as a top candidate LKB1 substrate in EOC cells and spheroids using a multiplex inhibitor beads-mass spectrometry approach. We confirmed that LKB1 maintains NUAK1 phosphorylation and promotes its stabilization. We next investigated NUAK1 function in EOC cells. Ectopic NUAK1-overexpressing EOC cell lines had increased adhesion, whereas the reverse was seen in OVCAR8-NUAK1KO cells. In fact, cells with NUAK1 loss generate spheroids with reduced integrity, leading to increased cell death after long-term culture. Following transcriptome analysis, we identified reduced enrichment for cell interaction gene expression pathways in OVCAR8-NUAK1KO spheroids. In fact, the FN1 gene, encoding fibronectin, exhibited a 745-fold decreased expression in NUAK1KO spheroids. Fibronectin expression was induced during native spheroid formation, yet this was completely lost in NUAK1KO spheroids. Co-incubation with soluble fibronectin restored the compact spheroid phenotype to OVCAR8-NUAK1KO cells. In a xenograft model of intraperitoneal metastasis, NUAK1 loss extended survival and reduced fibronectin expression in tumours. Thus, we have identified a new mechanism controlling EOC metastasis, through which LKB1-NUAK1 activity promotes spheroid formation and secondary tumours via fibronectin production.

20.
Nat Biotechnol ; 38(5): 638-648, 2020 05.
Article in English | MEDLINE | ID: mdl-32249828

ABSTRACT

Systematic mapping of genetic interactions (GIs) and interrogation of the functions of sizable genomic segments in mammalian cells represent important goals of biomedical research. To advance these goals, we present a CRISPR (clustered regularly interspaced short palindromic repeats)-based screening system for combinatorial genetic manipulation that employs coexpression of CRISPR-associated nucleases 9 and 12a (Cas9 and Cas12a) and machine-learning-optimized libraries of hybrid Cas9-Cas12a guide RNAs. This system, named Cas Hybrid for Multiplexed Editing and screening Applications (CHyMErA), outperforms genetic screens using Cas9 or Cas12a editing alone. Application of CHyMErA to the ablation of mammalian paralog gene pairs reveals extensive GIs and uncovers phenotypes normally masked by functional redundancy. Application of CHyMErA in a chemogenetic interaction screen identifies genes that impact cell growth in response to mTOR pathway inhibition. Moreover, by systematically targeting thousands of alternative splicing events, CHyMErA identifies exons underlying human cell line fitness. CHyMErA thus represents an effective screening approach for GI mapping and the functional analysis of sizable genomic regions, such as alternative exons.


Subject(s)
Bacterial Proteins/metabolism , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Proteins/metabolism , Endodeoxyribonucleases/metabolism , Gene Editing/methods , Gene Regulatory Networks , Alternative Splicing , Animals , CRISPR-Cas Systems , Cell Line , Genetic Fitness , Humans , Machine Learning , Male , Mice , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...