Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 13(16)2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32823912

ABSTRACT

The properties of native spider silk vary within and across species due to the presence of different genes containing conserved repetitive core domains encoding a variety of silk proteins. Previous studies seeking to understand the function and material properties of these domains focused primarily on the analysis of dragline silk proteins, MaSp1 and MaSp2. Our work seeks to broaden the mechanical properties of silk-based biomaterials by establishing two libraries containing genes from the repetitive core region of the native Latrodectus hesperus silk genome (Library A: genes masp1, masp2, tusp1, acsp1; Library B: genes acsp1, pysp1, misp1, flag). The expressed and purified proteins were analyzed through Fourier Transform Infrared Spectrometry (FTIR). Some of these new proteins revealed a higher portion of ß-sheet content in recombinant proteins produced from gene constructs containing a combination of masp1/masp2 and acsp1/tusp1 genes than recombinant proteins which consisted solely of dragline silk genes (Library A). A higher portion of ß-turn and random coil content was identified in recombinant proteins from pysp1 and flag genes (Library B). Mechanical characterization of selected proteins purified from Library A and Library B formed into films was assessed by Atomic Force Microscopy (AFM) and suggested Library A recombinant proteins had higher elastic moduli when compared to Library B recombinant proteins. Both libraries had higher elastic moduli when compared to native spider silk proteins. The preliminary approach demonstrated here suggests that repetitive core regions of the aforementioned genes can be used as building blocks for new silk-based biomaterials with varying mechanical properties.

2.
PLoS Genet ; 11(11): e1005651, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26544712

ABSTRACT

Elongating DNA polymerases frequently encounter lesions or structures that impede progress and require repair before DNA replication can be completed. Therefore, directing repair factors to a blocked fork, without interfering with normal replication, is important for proper cell function, and it is a process that is not well understood. To study this process, we have employed the chain-terminating nucleoside analog, 3' azidothymidine (AZT) and the E. coli genetic system, for which replication and repair factors have been well-defined. By using high-expression suppressor screens, we identified yoaA, encoding a putative helicase, and holC, encoding the Chi component of the replication clamp loader, as genes that promoted tolerance to AZT. YoaA is a putative Fe-S helicase in the XPD/RAD3 family for which orthologs can be found in most bacterial genomes; E. coli has a paralog to YoaA, DinG, which possesses 5' to 3' helicase activity and an Fe-S cluster essential to its activity. Mutants in yoaA are sensitive to AZT exposure; dinG mutations cause mild sensitivity to AZT and exacerbate the sensitivity of yoaA mutant strains. Suppression of AZT sensitivity by holC or yoaA was mutually codependent and we provide evidence here that YoaA and Chi physically interact. Interactions of Chi with single-strand DNA binding protein (SSB) and with Psi were required to aid AZT tolerance, as was the proofreading 3' exonuclease, DnaQ. Our studies suggest that repair is coupled to blocked replication through these interactions. We hypothesize that SSB, through Chi, recruits the YoaA helicase to replication gaps and that unwinding of the nascent strand promotes repair and AZT excision. This recruitment prevents the toxicity of helicase activity and aids the handoff of repair with replication factors, ensuring timely repair and resumption of replication.


Subject(s)
DNA Repair , DNA, Bacterial/biosynthesis , DNA-Directed DNA Polymerase/metabolism , Escherichia coli Proteins/physiology , Escherichia coli/drug effects , Reverse Transcriptase Inhibitors/pharmacology , Zidovudine/pharmacology , Escherichia coli/genetics , Escherichia coli/physiology , Escherichia coli Proteins/genetics , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...