Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Cell Biochem Funct ; 41(4): 478-489, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37150891

ABSTRACT

Cachexia is characterized by losses in lean body mass and its progression results in worsened quality of life and exacerbated outcomes in cancer patients. However, the role and impact of fibrosis during the early stages and development of cachexia in under-investigated. The purpose of this study was to determine if fibrosis occurs during cachexia development, and to evaluate this in both sexes. Female and male C57BL6/J mice were injected with phosphate-buffered saline or Lewis Lung Carcinoma (LLC) at 8-week of age, and tumors were allowed to develop for 1, 2, 3, or 4 weeks. 3wk and 4wk female tumor-bearing mice displayed a dichotomy in tumor growth and were reassigned to high tumor (HT) and low tumor (LT) groups. In vitro analyses were also performed on cocultured C2C12 and 3T3 cells exposed to LLC conditioned media. Immunohistochemistry and quantitative polymerase chain reaction (qPCR) analysis were used to investigate fibrosis and fibrosis-related signaling in skeletal muscle. Collagen deposition in skeletal muscle was increased in the 1wk, LT, and HT groups in female mice. However, collagen deposition was only increased in the 4wk group in male mice. In general, female mice displayed earlier alterations in extracellular matrix (ECM)-related genes beginning at 1wk post-LLC injection. Whereas this was not seen in males. While overall tumor burden is tightly correlated to cachexia development in both sexes, fibrotic development is not. Male mice did not exhibit early-stage alterations in ECM-related genes contrary to what was noted in female mice.


Subject(s)
Cachexia , Carcinoma, Lewis Lung , Male , Female , Animals , Mice , Cachexia/etiology , Cachexia/pathology , Quality of Life , Muscle, Skeletal/pathology , Carcinoma, Lewis Lung/complications , Carcinoma, Lewis Lung/pathology , Mice, Inbred C57BL
2.
Sports Med Health Sci ; 4(3): 198-208, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36090923

ABSTRACT

The ability of skeletal muscle to regenerate from injury is crucial for locomotion, metabolic health, and quality of life. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1A) is a transcriptional coactivator required for mitochondrial biogenesis. Increased mitochondrial biogenesis is associated with improved muscle cell differentiation, however PGC1A's role in skeletal muscle regeneration following damage requires further investigation. The purpose of this study was to investigate the role of skeletal muscle-specific PGC1A overexpression during regeneration following damage. 22 C57BL/6J (WT) and 26 PGC1A muscle transgenic (A1) mice were injected with either phosphate-buffered saline (PBS, uninjured control) or Bupivacaine (MAR, injured) into their tibialis anterior (TA) muscle to induce skeletal muscle damage. TA muscles were extracted 3- or 28-days post-injury and analyzed for markers of regenerative myogenesis and protein turnover. Pgc1a mRNA was ∼10-20 fold greater in A1 mice. Markers of protein synthesis, AKT and 4EBP1, displayed decreases in A1 mice compared to WT at both timepoints indicating a decreased protein synthetic response. Myod mRNA was ∼75% lower compared to WT 3 days post-injection. WT mice exhibited decreased cross-sectional area of the TA muscle at 28 days post-injection with bupivacaine compared to all other groups. PGC1A overexpression modifies the myogenic response during regeneration.

3.
Stem Cell Reports ; 16(9): 2078-2088, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34388363

ABSTRACT

The health and homeostasis of skeletal muscle are preserved by a population of tissue-resident muscle stem cells (MuSCs) that maintain a state of mitotic and metabolic quiescence in adult tissues. The capacity of MuSCs to preserve the quiescent state declines with aging and metabolic insults, promoting premature activation and stem cell exhaustion. Sestrins are a class of stress-inducible proteins that act as antioxidants and inhibit the activation of the mammalian target of rapamycin complex 1 (mTORC1) signaling complex. Despite these pivotal roles, the role of Sestrins has not been explored in adult stem cells. We show that SESTRIN1,2 loss results in hyperactivation of the mTORC1 complex, increased propensity to enter the cell cycle, and shifts in metabolic flux. Aged SESTRIN1,2 knockout mice exhibited loss of MuSCs and a reduced ability to regenerate injured muscle. These findings demonstrate that Sestrins help maintain metabolic pathways in MuSCs that protect quiescence against aging.


Subject(s)
Energy Metabolism , Homeostasis , Muscle, Skeletal/cytology , Sestrins/genetics , Stem Cells/metabolism , Age Factors , Animals , Biomarkers , Cell Culture Techniques , Cell Separation/methods , Gene Expression Profiling , Gene Expression Regulation , Gene Knockdown Techniques , High-Throughput Nucleotide Sequencing , Immunohistochemistry , Immunophenotyping , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Knockout , Regeneration , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/metabolism , Sestrins/deficiency , Sestrins/metabolism , Stem Cells/cytology
4.
Elife ; 102021 07 29.
Article in English | MEDLINE | ID: mdl-34323217

ABSTRACT

During aging and neuromuscular diseases, there is a progressive loss of skeletal muscle volume and function impacting mobility and quality of life. Muscle loss is often associated with denervation and a loss of resident muscle stem cells (satellite cells or MuSCs); however, the relationship between MuSCs and innervation has not been established. Herein, we administered severe neuromuscular trauma to a transgenic murine model that permits MuSC lineage tracing. We show that a subset of MuSCs specifically engraft in a position proximal to the neuromuscular junction (NMJ), the synapse between myofibers and motor neurons, in healthy young adult muscles. In aging and in a mouse model of neuromuscular degeneration (Cu/Zn superoxide dismutase knockout - Sod1-/-), this localized engraftment behavior was reduced. Genetic rescue of motor neurons in Sod1-/- mice reestablished integrity of the NMJ in a manner akin to young muscle and partially restored MuSC ability to engraft into positions proximal to the NMJ. Using single cell RNA-sequencing of MuSCs isolated from aged muscle, we demonstrate that a subset of MuSCs are molecularly distinguishable from MuSCs responding to myofiber injury and share similarity to synaptic myonuclei. Collectively, these data reveal unique features of MuSCs that respond to synaptic perturbations caused by aging and other stressors.


Subject(s)
Aging , Muscle, Skeletal/injuries , Myoblasts, Skeletal/physiology , Neuromuscular Junction/physiology , Superoxide Dismutase-1/deficiency , Animals , Female , Male , Mice, Knockout
5.
Aging Cell ; 20(6): e13393, 2021 06.
Article in English | MEDLINE | ID: mdl-34075679

ABSTRACT

Specialized pro-resolving mediators actively limit inflammation and support tissue regeneration, but their role in age-related muscle dysfunction has not been explored. We profiled the mediator lipidome of aging muscle via liquid chromatography-tandem mass spectrometry and tested whether treatment with the pro-resolving mediator resolvin D1 (RvD1) could rejuvenate the regenerative ability of aged muscle. Aged mice displayed chronic muscle inflammation and this was associated with a basal deficiency of pro-resolving mediators 8-oxo-RvD1, resolvin E3, and maresin 1, as well as many anti-inflammatory cytochrome P450-derived lipid epoxides. Following muscle injury, young and aged mice produced similar amounts of most pro-inflammatory eicosanoid metabolites of cyclooxygenase (e.g., prostaglandin E2 ) and 12-lipoxygenase (e.g., 12-hydroxy-eicosatetraenoic acid), but aged mice produced fewer markers of pro-resolving mediators including the lipoxins (15-hydroxy-eicosatetraenoic acid), D-resolvins/protectins (17-hydroxy-docosahexaenoic acid), E-resolvins (18-hydroxy-eicosapentaenoic acid), and maresins (14-hydroxy-docosahexaenoic acid). Similar absences of downstream pro-resolving mediators including lipoxin A4 , resolvin D6, protectin D1/DX, and maresin 1 in aged muscle were associated with greater inflammation, impaired myofiber regeneration, and delayed recovery of strength. Daily intraperitoneal injection of RvD1 had minimal impact on intramuscular leukocyte infiltration and myofiber regeneration but suppressed inflammatory cytokine expression, limited fibrosis, and improved recovery of muscle function. We conclude that aging results in deficient local biosynthesis of specialized pro-resolving mediators in muscle and that immunoresolvents may be attractive novel therapeutics for the treatment of muscular injuries and associated pain in the elderly, due to positive effects on recovery of muscle function without the negative side effects on tissue regeneration of non-steroidal anti-inflammatory drugs.


Subject(s)
Aging/physiology , Inflammation/metabolism , Mass Spectrometry/methods , Metabolism/physiology , Muscle, Skeletal/metabolism , Tissue Engineering/methods , Animals , Humans , Mice
6.
JCSM Rapid Commun ; 4(1): 3-15, 2021.
Article in English | MEDLINE | ID: mdl-33693448

ABSTRACT

Cachexia presents in 80% of advanced cancer patients; however, cardiac atrophy in cachectic patients receives little attention. This cardiomyopathy contributes to increased occurrence of adverse cardiac events compared to age-matched population norms. Research on cardiac atrophy has focused on remodeling; however, alterations in metabolic properties may be a primary contributor. PURPOSE: Determine how cancer-induced cardiac atrophy alters mitochondrial turnover, mitochondrial mRNA translation machinery and in-vitro oxidative characteristics. METHODS: Lewis lung carcinoma (LLC) tumors were implanted in C57BL6/J mice and grown for 28days to induce cardiac atrophy. Endogenous metabolic species, and markers of mitochondrial function were assessed. H9c2 cardiomyocytes were cultured in LLC-conditioned media with(out) the antioxidant MitoTempo. Cells were analyzed for ROS, oxidative capacity, and hypoxic resistance. RESULTS: LLC heart weights were ~10% lower than controls. LLC hearts demonstrated ~15% lower optical redox ratio (FAD/FAD+NADH) compared to PBS controls. When compared to PBS, LLC hearts showed ~50% greater COX-IV and VDAC, attributed to ~50% lower mitophagy markers. mt-mRNA translation machinery was elevated similarly to markers of mitochondrial content. mitochondrial DNA-encoded Cytb was ~30% lower in LLC hearts. ROS scavengers GPx-3 and GPx-7 were ~50% lower in LLC hearts. Treatment of cardiomyocytes with LLC-conditioned media resulted in higher ROS (25%), lower oxygen consumption rates (10% at basal, 75% at maximal), and greater susceptibility to hypoxia (~25%) -- which was reversed by MitoTempo. CONCLUSION: These results substantiate metabolic cardiotoxic effects attributable to tumor-associated factors and provide insight into interactions between mitochondrial mRNA translation, ROS mitigation, oxidative capacity and hypoxia resistance.

7.
Sports Med Health Sci ; 3(4): 212-217, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35783375

ABSTRACT

Diet-induced obesity has previously been shown to occur with the concomitant rise in the expression of proinflammatory cytokines and increases in collagen deposition. While it has been known that the regenerative process of skeletal muscle is altered in obese mice following an acute muscle injury, we sought to examine differences in the expression of various markers of extracellular matrix remodeling and repair. Our laboratory has previously reported an impaired inflammatory and protein synthetic signaling in these mice that may contribute negatively to the muscle regenerative process. To expand upon this previous investigation, tissues from these animals underwent further analysis to determine the extent of changes to the regenerative response within the extracellular matrix, including transcriptional changes in Collagen I, Collagen III, and Fibronectin. Here, we show that the expression of Collagen III:I is significantly increased at 3-days post-injury in obese injured animals compared to lean injured animals (p â€‹= â€‹0.0338), and by 28-days the obese injured animals exhibit a significantly lower Collagen III:I than their lean injured counterparts (p â€‹= â€‹0.0035). We demonstrate an impaired response to an acute muscle injury in obese mice when compared with lean counterparts. However, further studies are required to elucidate translational consequences of these changes, as well as to determine any causative mechanisms that may be driving this effect.

8.
Mech Ageing Dev ; 194: 111404, 2021 03.
Article in English | MEDLINE | ID: mdl-33249192

ABSTRACT

The purpose of this study was to determine whether sarcopenic obesity accelerates impairments in muscle maintenance through the investigation of cell cycle progression and myogenic, inflammatory, catabolic and protein synthetic signaling in mouse gastrocnemius muscles. At 4 weeks old, 24 male C57BL/6 mice were fed either a high fat diet (HFD, 60 % fat) or normal chow (NC, 17 % fat) for either 8-12 weeks or 21-23 months. At 3-4 months or 22-24 months the gastrocnemius muscles were excised. In addition, plasma was taken for C2C12 differentiation experiments. Mean cross-sectional area (CSA) was reduced by 29 % in aged HFD fed mice compared to the aged NC mice. MyoD was roughly 50 % greater in the aged mice compared to young mice, whereas TNF-α and IGF-1 gene expression in aged HFD fed mice were reduced by 52 % and 65 % in comparison to aged NC fed mice, respectively. Myotubes pretreated with plasma from aged NC fed mice had 14 % smaller myotube diameter than their aged HFD counterparts. Aged obese mice had greater impairments to mediators of muscle maintenance as evident by reductions in muscle mass, CSA, along with alterations in cell cycle regulation and inflammatory and insulin signaling.


Subject(s)
Muscle Development , Muscle, Skeletal/metabolism , MyoD Protein/metabolism , Obesity/complications , Sarcopenia/etiology , Age Factors , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line , Diet, High-Fat , Disease Models, Animal , Inflammation Mediators/metabolism , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Male , Mice, Inbred C57BL , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/pathology , MyoD Protein/genetics , Sarcopenia/metabolism , Sarcopenia/pathology , Signal Transduction , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
9.
JCI Insight ; 5(18)2020 09 17.
Article in English | MEDLINE | ID: mdl-32750044

ABSTRACT

Specialized proresolving mediators (SPMs) actively limit inflammation and expedite its resolution by modulating leukocyte recruitment and function. Here we profiled intramuscular lipid mediators via liquid chromatography-tandem mass spectrometry-based metabolipidomics following myofiber injury and investigated the potential role of SPMs in skeletal muscle inflammation and repair. Both proinflammatory eicosanoids and SPMs increased following myofiber damage induced by either intramuscular injection of barium chloride or synergist ablation-induced functional muscle overload. Daily systemic administration of the SPM resolvin D1 (RvD1) as an immunoresolvent limited the degree and duration of inflammation, enhanced regenerating myofiber growth, and improved recovery of muscle strength. RvD1 suppressed inflammatory cytokine expression, enhanced polymorphonuclear cell clearance, modulated the local muscle stem cell response, and polarized intramuscular macrophages to a more proregenerative subset. RvD1 had minimal direct impact on in vitro myogenesis but directly suppressed myokine production and stimulated macrophage phagocytosis, showing that SPMs can modulate both infiltrating myeloid and resident muscle cell populations. These data reveal the efficacy of immunoresolvents as a novel alternative to classical antiinflammatory interventions in the management of muscle injuries to modulate inflammation while stimulating tissue repair.


Subject(s)
Docosahexaenoic Acids/metabolism , Inflammation/therapy , Muscle Fibers, Skeletal/cytology , Muscle, Skeletal/cytology , Myeloid Cells/cytology , Regeneration , Stem Cells/cytology , Animals , Docosahexaenoic Acids/genetics , Female , Inflammation/genetics , Inflammation/metabolism , Macrophages/cytology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Myeloid Cells/metabolism , Neutrophils/cytology , Neutrophils/metabolism , Rats , Rats, Sprague-Dawley , Stem Cells/metabolism
10.
Cell Rep ; 32(4): 107964, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32726628

ABSTRACT

During aging, there is a progressive loss of volume and function in skeletal muscle that impacts mobility and quality of life. The repair of skeletal muscle is regulated by tissue-resident stem cells called satellite cells (or muscle stem cells [MuSCs]), but in aging, MuSCs decrease in numbers and regenerative capacity. The transcriptional networks and epigenetic changes that confer diminished regenerative function in MuSCs as a result of natural aging are only partially understood. Herein, we use an integrative genomics approach to profile MuSCs from young and aged animals before and after injury. Integration of these datasets reveals aging impacts multiple regulatory changes through significant differences in gene expression, metabolic flux, chromatin accessibility, and patterns of transcription factor (TF) binding activities. Collectively, these datasets facilitate a deeper understanding of the regulation tissue-resident stem cells use during aging and healing.


Subject(s)
Cellular Senescence/genetics , Satellite Cells, Skeletal Muscle/metabolism , Stem Cells/metabolism , Aging/metabolism , Animals , Cell Line , Female , Genomics/methods , Mice , Mice, Inbred C57BL , Muscle Cells/metabolism , Muscle, Skeletal/metabolism , Myoblasts/metabolism , Regeneration/physiology
11.
Transl Res ; 221: 44-57, 2020 07.
Article in English | MEDLINE | ID: mdl-32243876

ABSTRACT

The age-associated decline in muscle mass has become synonymous with physical frailty among the elderly due to its major contribution in reduced muscle function. Alterations in protein and redox homeostasis along with chronic inflammation, denervation, and hormonal dysregulation are all hallmarks of muscle wasting and lead to clinical sarcopenia in older adults. Reduction in skeletal muscle mass has been observed and reported in the scientific literature for nearly 2 centuries; however, identification and careful examination of molecular mediators of age-related muscle atrophy have only been possible for roughly 3 decades. Here we review molecular targets of recent interest in age-related muscle atrophy and briefly discuss emerging small molecule therapeutic treatments for muscle wasting in sarcopenic susceptible populations.


Subject(s)
Aging/metabolism , Muscle, Skeletal/pathology , Muscular Atrophy/metabolism , Humans , Muscular Atrophy/pathology
12.
Acta Biomater ; 105: 191-202, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31978621

ABSTRACT

A key event in the etiology of volumetric muscle loss (VML) injury is the bulk loss of structural cues provided by the underlying extracellular matrix (ECM). To re-establish the lost cues, there is broad consensus within the literature supporting the utilization of implantable scaffolding. However, while scaffold based regenerative medicine strategies have shown potential, there remains a significant amount of outcome variability observed across the field. We suggest that an overlooked source of outcome variability is differences in scaffolding architecture. The goal of this study was to test the hypothesis that implant alignment has a significant impact on genotypic and phenotypic outcomes following the repair of VML injuries. Using a rat VML model, outcomes across three autograft implant treatment groups (aligned implants, 45° misaligned, and 90° misaligned) and two recovery time points (2 weeks and 12 weeks) were examined (n = 6-8/group). At 2 weeks post-repair there were no significant differences in muscle mass and torque recovery between the treatment groups, however we did observe a significant upregulation of MyoD (2.5 fold increase) and Pax7 (2 fold increase) gene expression as well as the presence of immature myofibers at the implant site for those animals repaired with aligned autografts. By 12 weeks post-repair, functional and structural differences between the treatment groups could be detected. Aligned autografts had significantly greater mass and torque recovery (77 ± 10% of normal) when compared to 45° and 90° misaligned autografts (64 ± 10% and 61 ± 11%, respectively). Examination of tissue structure revealed extensive fibrosis and a significant increase in non-contractile tissue area fraction for only those animals treated using misaligned autografts. When taken together, the results suggest that implant graft orientation has a significant impact on in-vivo outcomes and indicate that the effect of graft alignment on muscle phenotype may be mediated through genotypic changes to myogenesis and fibrosis at the site of injury and repair. STATEMENT OF SIGNIFICANCE: A key event in the etiology of volumetric muscle loss injury is the bulk loss of architectural cues provided by the underlying extracellular matrix. To re-establish the lost cues, there is broad consensus within the literature supporting the utilization of implantable scaffolding. Yet, although native muscle is a highly organized tissue with network and cellular alignment in the direction of contraction, there is little evidence within the field concerning the importance of re-establishing native architectural alignment. The results of this study suggest that critical interactions exist between implant and native muscle alignment cues during healing, which influence the balance between myogenesis and fibrosis. Specifically, it appears that alignment of implant architectural cues with native muscle cues is necessary to create a pro-myogenic environment and contractile force recovery. The results also suggest that misaligned cues may be pathological, leading to fibrosis and poor contractile force recovery.


Subject(s)
Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Regeneration , Tissue Scaffolds/chemistry , Animals , Disease Models, Animal , Gene Expression Regulation , Organ Size , Rats, Inbred F344 , Tibia/surgery , Torque
13.
Appl Physiol Nutr Metab ; 45(3): 264-274, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31340136

ABSTRACT

Muscle disuse impairs muscle quality and is associated with increased mortality. Little is known regarding additive effects of multiple bouts of disuse, which is a common occurrence in patients experiencing multiple surgeries. Mitochondrial quality is vital to muscle health and quality; however, to date mitochondrial quality control has not been investigated following multiple bouts of disuse. Therefore, the purpose of this study was to investigate mitochondrial quality controllers during multiple bouts of disuse by hindlimb unloading. Male rats (n ∼ 8/group) were assigned to the following groups: hindlimb unloading for 28 days, hindlimb unloading with 56 days of reloading, 2 bouts of hindlimb unloading separated by a recovery phase of 56 days of reloading, 2 bouts of hindlimb unloading and recovery after each disuse, or control animals with no unloading. At designated time points, tissues were collected for messenger RNA and protein analysis of mitochondrial quality. Measures of mitochondrial biogenesis, such as proliferator-activated receptor gamma coactivator 1 alpha, decreased 30%-40% with unloading with no differences noted between unloading conditions. Measures of mitochondrial translation were 40%-50% lower in unloading conditions, with no differences noted between bouts of unloading. Measures of mitophagy were 40%-50% lower with reloading, with no differences noted between reloading conditions. In conclusion, disuse causes alterations in measures of mitochondrial quality; however, multiple bouts of disuse does not appear to have additive effects. Novelty Disuse atrophy causes multiple alterations to mitochondrial quality control. With sufficient recovery most detriments to mitochondrial quality control are fixed. In general, multiple bouts of disuse do not produce additive effects.


Subject(s)
Hindlimb Suspension/methods , Mitochondria, Muscle/physiology , Muscular Atrophy/physiopathology , Organelle Biogenesis , Animals , Disease Models, Animal , Hindlimb/metabolism , Hindlimb/physiopathology , Hindlimb Suspension/statistics & numerical data , Male , Muscle, Skeletal/physiopathology , Rats , Rats, Sprague-Dawley
14.
Data Brief ; 27: 104570, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31687430

ABSTRACT

The data described below is related to the manuscript "Late life maintenance and enhancement of functional exercise capacity in low and high responding rats after low intensity treadmill training" [1]. Rodents exhibit age-related declines in skeletal muscle function that is associated with muscle denervation and cellular senescence. Exercise training is a proven method to delay or even reverse some aging phenotypes, thus improving healthspan in the elderly. The beneficial effects of exercise to preserve muscle may be reliant on an individual's innate ability to adapt to aerobic training. To examine this question, we assessed aged rats that were selectively bred to be either minimally or highly responsive to aerobic exercise training. We specifically asked whether mild treadmill training initiated late in life would be beneficial to preserve muscle function in high response and low response trainer rats. We examined gene expression data on markers of denervation and senescence. We also evaluated measures of aerobic training and neuromuscular muscle function through work capacity, contractile properties, and endplate fragmentation for further analysis of the aging phenotype in older rodents.

15.
Exp Gerontol ; 125: 110657, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31306740

ABSTRACT

Intrinsic exercise capacity is predictive of both lifespan and healthspan but whether adaptive exercise capacity influences the benefits achieved from aerobic training implemented later in life is not known. AIM: To determine if exercise late in life provides any functional improvements or underlying beneficial biochemical adaptations in rats bred to have a high response to training (HRT rats) or little to no response to training (LRT rats). METHODS: Adult (11 months) and old (22 months) female LRT and HRT rats either remained sedentary (SED) or were exercised (EXER) on a treadmill 2-3 times/week at 60% of their initial maximum running speed and distance for 4 months. At 26 months of age, exercise capacity was re-evaluated and extensor digitorum longus, gastrocnemius (GTN), and tibialis anterior (TA) muscles were excised for histological and biochemical analysis. RESULTS: Both SED-HRT and SED-LRT rats showed decreased exercise capacity from 22 to 26 months, but with 4 months of treadmill training, EXER-HRT rats displayed a 50% improvement in exercise capacity while EXER-LRT rats maintained pre-training levels. Protein levels of antioxidant enzymes PRDX3, CuZnSOD, and PRXV were 6-fold greater in TA muscles of aged HRT rats compared to LRT rats. PGC-1α protein levels were ~2-fold greater in GTN and TA muscles of aged HRT than in LRT rats and TFAM protein was similarly elevated in GTN muscles of aged HRT rats compared with LRT rats. BNIP3 protein levels were 5-fold greater in TA muscles of aged HRT than in LRT rats while PINK1 protein content was reduced by 78% in GTN muscles of aged HRT rats compared with LRT rats. CONCLUSION: HRT rats retained the ability to improve exercise capacity into late life and that ability was associated with inherent and adaptive changes in antioxidant enzyme levels and markers of and mitochondrial quality related to healthspan benefits in aging. Moreover, low intensity exercise prevented the age-associated decline in functional exercise capacity in LRT rats.


Subject(s)
Exercise Tolerance , Longevity/physiology , Physical Conditioning, Animal/physiology , Adaptation, Physiological , Animals , Antioxidants/metabolism , Female , Male , Mitochondrial Proteins/metabolism , Muscle, Skeletal/physiology , Rats
16.
Exp Gerontol ; 121: 62-70, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30928679

ABSTRACT

Being both advanced in age and obese each contribute to cardiac hypertrophy in a unique manner. Electron transport complexes I and IV are implicated in deficient electron transport during cardiomyopathies and contain the majority of protein subunits that are transcribed and translated by machinery localized within the mitochondria. PURPOSE: To assess myocardial mt-mRNA translation factors in relation to mitochondrial content and mtDNA-encoded protein using a mouse model of aged obesity and to test the relationship of mt-mRNA translation initiation factor 2 (mtIF2) to oxidative capacity and the cellular oxidation-reduction (redox) state in cardiomyocytes. METHODS: Male C56BL/6 J mice fed lean or high fat diet were aged to either ~3 months or ~22 months, the heart was excised and analyzed using immunoblot and qPCR to assess differences in mitochondrial mRNA translation machinery. Using H9c2 cardiomyocytes, mtIF2 was knocked-down and oxidative metabolic characteristics assessed including oxidation/reduction state, bioenergetic flux, and hypoxic resistance was tested. RESULTS: Aged, obese mouse hearts were ~40% larger than young, lean controls and contained ~50% less mtIF2 protein alongside ~25-50% lower content of Cytb, a protein encoded by mtDNA. Reducing the level of mtIF2 by shRNA is associated with ~15-20% lower content of OXPHOS complex I and IV, ~30% lower optical redox ratio, ~40% oxygen reserve capacity, and ~20% less cell survival following hypoxia. CONCLUSION: We present evidence of altered mt-mRNA translation during cardiac hypertrophy in aged obesity. We build on these results by demonstrating the necessity of mtIF2 in maintaining oxidative characteristics of cardiac muscle cells.


Subject(s)
Mitochondria, Heart/physiology , Myocardium/metabolism , RNA, Messenger/physiology , RNA, Mitochondrial/physiology , Aging/physiology , Animals , Body Weight/physiology , Down-Regulation/genetics , Male , Mice, Inbred C57BL , Mice, Obese , Mitochondrial Proteins/genetics , Obesity/metabolism , Oxidation-Reduction
17.
Physiol Genomics ; 50(12): 1071-1082, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30289747

ABSTRACT

Cancer-cachexia (CC) is a wasting condition directly responsible for 20-40% of cancer-related deaths. The mechanisms controlling development of CC-induced muscle wasting are not fully elucidated. Most investigations focus on the postcachectic state and do not examine progression of the condition. We recently demonstrated mitochondrial degenerations precede muscle wasting in time course progression of CC. However, the extent of muscle perturbations before wasting in CC is unknown. Therefore, we performed global gene expression analysis in CC-induced muscle wasting to enhance understanding of intramuscular perturbations across the development of CC. Lewis lung carcinoma (LLC) was injected into the hind-flank of C57BL6/J mice at 8 wk of age with tumor allowed to develop for 1, 2, 3, or 4 wk and compared with PBS-injected control. Muscle wasting was evident at 4 wk LLC. RNA sequencing of gastrocnemius muscle samples showed widespread alterations in LLC compared with PBS animals with largest differences seen in 4 wk LLC, suggesting extensive transcriptomic alterations concurrent to muscle wasting. Commonly altered pathways included: mitochondrial dysfunction and protein ubiquitination, along with other less studied processes in this condition regulating transcription/translation and cytoskeletal structure. Current findings present novel evidence of transcriptomic shifts and altered cellular pathways in CC-induced muscle wasting.


Subject(s)
Cachexia/genetics , Muscle Fibers, Skeletal/pathology , Muscular Atrophy/genetics , Transcriptome/genetics , Animals , Cachexia/pathology , Carcinoma, Lewis Lung/genetics , Carcinoma, Lewis Lung/pathology , Disease Progression , Gene Expression Profiling/methods , Mice , Mice, Inbred C57BL , Mitochondria/genetics , Mitochondria/pathology , Muscular Atrophy/pathology
18.
J Cachexia Sarcopenia Muscle ; 9(5): 987-1002, 2018 10.
Article in English | MEDLINE | ID: mdl-30328290

ABSTRACT

BACKGROUND: Cancer cachexia occurs in approximately 80% of cancer patients and is a key contributor to cancer-related death. The mechanisms controlling development of tumour-induced muscle wasting are not fully elucidated. Specifically, the progression and development of cancer cachexia are underexplored. Therefore, we examined skeletal muscle protein turnover throughout the development of cancer cachexia in tumour-bearing mice. METHODS: Lewis lung carcinoma (LLC) was injected into the hind flank of C57BL6/J mice at 8 weeks age with tumour allowed to develop for 1, 2, 3, or 4 weeks and compared with PBS injected control. Muscle size was measured by cross-sectional area analysis of haematoxylin and eosin stained tibialis anterior muscle. 2 H2 O was used to assess protein synthesis throughout the development of cancer cachexia. Immunoblot and RT-qPCR were used to measure regulators of protein turnover. TUNEL staining was utilized to measure apoptotic nuclei. LLC conditioned media (LCM) treatment of C2C12 myotubes was used to analyse cancer cachexia in vitro. RESULTS: Muscle cross-sectional area decreased ~40% 4 weeks following tumour implantation. Myogenic signalling was suppressed in tumour-bearing mice as soon as 1 week following tumour implantation, including lower mRNA contents of Pax7, MyoD, CyclinD1, and Myogenin, when compared with control animals. AchRδ and AchRε mRNA contents were down-regulated by ~50% 3 weeks following tumour implantation. Mixed fractional synthesis rate protein synthesis was ~40% lower in 4 week tumour-bearing mice when compared with PBS controls. Protein ubiquitination was elevated by ~50% 4 weeks after tumour implantation. Moreover, there was an increase in autophagy machinery after 4 weeks of tumour growth. Finally, ERK and p38 MAPK phosphorylations were fourfold and threefold greater than control muscle 4 weeks following tumour implantation, respectively. Inhibition of p38 MAPK, but not ERK MAPK, in vitro partially rescued LCM-induced loss of myotube diameter. CONCLUSIONS: Our findings work towards understanding the pathophysiological signalling in skeletal muscle in the initial development of cancer cachexia. Shortly following the onset of the tumour-bearing state alterations in myogenic regulatory factors are apparent, suggesting early onset alterations in the capacity for myogenic induction. Cancer cachexia presents with a combination of a loss of protein synthesis and increased markers of protein breakdown, specifically in the ubiquitin-proteasome system. Also, p38 MAPK may be a potential therapeutic target to combat cancer cachexia via a p38-FOX01-atrogene-ubiquitin-proteasome mechanism.

19.
Exp Gerontol ; 111: 122-132, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29958999

ABSTRACT

Sarcopenic obesity (SO) is the comorbidity of age-related muscle wasting and obesity. SO increases the risk of heart disease, but little is known about the cellular signaling in cardiac muscle of SO individuals. AIM: The purpose of this study was to identify key cellular signaling alterations in cardiac muscle of sarcopenic obese mice. METHODS: Thirty-two, male C57BL/6J mice were randomly divided into lean and high-fat fed groups and raised to 3-4 months (young) or 20-22 months (aged) of age. Hearts were extracted and processed for Western blot and qRT-PCR analyses. RESULTS: Hearts of SO mice were 36-55% heavier than the young, obese or aged, lean groups. Markers downstream of Akt were not elevated in the SO group. p-p38:p38 MAPK was higher with age, and a 2-fold increase was observed in the obese vs. lean aged groups. pERK1/2:ERK1/2 MAPK was ~50-70% lower in the SO cardiac muscle compared to the young, obese group. pAMPK:AMPK was 50%-66% lower in the SO cardiac muscle compared to the obese and lean, aged groups. mRNA abundance of TNFα was ~2.5-fold higher in the SO group. CONCLUSION: Cardiac hypertrophy in SO is likely pathogenic as evidenced by the alterations in MAPK and AMPK protein content and lack of activation in the Akt/mTOR pathway.


Subject(s)
AMP-Activated Protein Kinases/physiology , Cardiomegaly/pathology , Mitogen-Activated Protein Kinases/physiology , Sarcopenia/pathology , TOR Serine-Threonine Kinases/physiology , Animals , Blood Glucose/metabolism , Cardiomegaly/etiology , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Myocardium/metabolism , Random Allocation , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
20.
J Gerontol A Biol Sci Med Sci ; 73(12): 1581-1590, 2018 11 10.
Article in English | MEDLINE | ID: mdl-29684112

ABSTRACT

Myeloid cells play a critical role in regulating muscle degeneration and regeneration. Thus, alterations with aging in the myeloid cell response to muscle damage may affect the progression of the injury in old animals. We hypothesized that neutrophil levels remain elevated and that macrophage accumulation is reduced or delayed in injured muscles of old compared with young animals. Muscles of young and old mice were injured with lengthening contractions and analyzed 2 or 5 days later. Regardless of age, neutrophil (Gr-1+) and macrophage (CD68+) content increased dramatically by Day 2. Between 2 and 5 days, macrophages increased further, whereas neutrophils declined to a level that in old muscles was not different from uninjured controls. M2 macrophages (CD163+) also increased between 2 and 5 days, reaching higher levels in muscles of old mice than in young mice. Although no evidence of persisting neutrophils or reduced M2 accumulation in old muscle was found, total macrophage accumulation was lower in old mice. Furthermore, messenger RNA levels showed age-related changes in macrophage-associated genes that may indicate alterations in myeloid cell function. Overall, differences between muscles of old and young mice in the inflammatory response through the early stages of injury may contribute to defects in muscle regeneration.


Subject(s)
Cell Proliferation/physiology , Muscle Contraction/physiology , Muscle, Skeletal/injuries , Myeloid Cells/cytology , Wounds and Injuries/pathology , Age Factors , Analysis of Variance , Animals , Cells, Cultured , Disease Models, Animal , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/pathology , Myeloid Cells/physiology , Neutrophils/metabolism , Random Allocation , Reference Values
SELECTION OF CITATIONS
SEARCH DETAIL
...