Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
PLoS Pathog ; 18(10): e1010891, 2022 10.
Article in English | MEDLINE | ID: mdl-36206307

ABSTRACT

Although antibody-inducing split virus vaccines (SV) are currently the most effective way to combat seasonal influenza, their efficacy can be modest, especially in immunologically-naïve individuals. We investigated immune responses towards inactivated whole influenza virus particle vaccine (WPV) formulations, predicated to be more immunogenic, in a non-human primate model, as an important step towards clinical testing in humans. Comprehensive analyses were used to capture 46 immune parameters to profile how WPV-induced responses differed to those elicited by antigenically-similar SV formulations. Naïve cynomolgus macaques vaccinated with either monovalent or quadrivalent WPV consistently induced stronger antibody responses and hemagglutination inhibition (HI) antibody titres against vaccine-matched viruses compared to SV formulations, while acute reactogenic effects were similar. Responses in WPV-primed animals were further increased by boosting with the same formulation, conversely to modest responses after priming and boosting with SV. 28-parameter multiplex bead array defined key antibody features and showed that while both WPV and SV induced elevated IgG responses against A/H1N1 nucleoprotein, only WPV increased IgG responses against A/H1N1 hemagglutinin (HA) and HA-Stem, and higher IgA responses to A/H1N1-HA after each vaccine dose. Antibodies to A/H1N1-HA and HA-Stem that could engage FcγR2a and FcγR3a were also present at higher levels after one dose of WPV compared to SV and remained elevated after the second dose. Furthermore, WPV-enhanced antibody responses were associated with higher frequencies of HA-specific B-cells and IFN-γ-producing CD4+ T-cell responses. Our data additionally demonstrate stronger boosting of HI titres by WPV following prior infection and support WPV administered as a priming dose irrespective of the follow up vaccine for the second dose. Our findings thus show that compared to SV vaccination, WPV-induced humoral responses are significantly increased in scope and magnitude, advocating WPV vaccination regimens for priming immunologically-naïve individuals and also in the event of a pandemic outbreak.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Animals , Humans , Hemagglutinins , Antibodies, Viral , Vaccination , Hemagglutination Inhibition Tests , Vaccines, Inactivated , Macaca fascicularis , Virion , Immunoglobulin A , Immunoglobulin G , Nucleoproteins
2.
Front Microbiol ; 12: 683152, 2021.
Article in English | MEDLINE | ID: mdl-34335507

ABSTRACT

A segmented genome enables influenza virus to undergo reassortment when two viruses infect the same cell. Although reassortment is involved in the creation of pandemic influenza strains and is routinely used to produce influenza vaccines, our understanding of the factors that drive the emergence of dominant gene constellations during this process is incomplete. Recently, we defined a spectrum of interactions between the gene segments of the A/Udorn/307/72 (H3N2) (Udorn) strain that occur within virus particles, a major interaction being between the NA and PB1 gene segments. In addition, we showed that the Udorn PB1 is preferentially incorporated into reassortant viruses that express the Udorn NA. Here we use an influenza vaccine seed production model where eggs are coinfected with Udorn and the high yielding A/Puerto Rico/8/34 (H1N1) (PR8) virus and track viral genotypes through the reassortment process under antibody selective pressure to determine the impact of Udorn NA-PB1 co-selection. We discovered that 86% of the reassortants contained the PB1 from the Udorn parent after the initial co-infection and this bias towards Udorn PB1 was maintained after two further passages. Included in these were certain gene constellations containing Udorn HA, NA, and PB1 that confered low replicative fitness yet rapidly became dominant at the expense of more fit progeny, even when co-infection ratios of the two viruses favoured PR8. Fitness was not compromised, however, in the corresponding reassortants that also contained Udorn NP. Of particular note is the observation that relatively unfit reassortants could still fulfil the role of vaccine seed candidates as they provided high haemagglutinin (HA) antigen yields through co-production of non-infectious particles and/or by more HA molecules per virion. Our data illustrate the dynamics and complexity of reassortment and highlight how major gene segment interactions formed during packaging, in addition to antibody pressure, initially restrict the reassortant viruses that are formed.

3.
Viruses ; 13(6)2021 05 24.
Article in English | MEDLINE | ID: mdl-34073843

ABSTRACT

Despite seasonal influenza vaccines having been routinely used for many decades, influenza A virus continues to pose a global threat to humans, causing high morbidity and mortality each year. The effectiveness of the vaccine is largely dependent on how well matched the vaccine strains are with the circulating influenza virus strains. Furthermore, low vaccine efficacy in naïve populations such as young children, or in the elderly, who possess weakened immune systems, indicates that influenza vaccines need to be more personalized to provide broader community protection. Advances in both vaccine technologies and our understanding of influenza virus infection and immunity have led to the design of a variety of alternate vaccine strategies to extend population protection against influenza, some of which are now in use. In this review, we summarize the progress in the field of influenza vaccines, including the advantages and disadvantages of different strategies, and discuss future prospects. We also highlight some of the challenges to be faced in the ongoing effort to control influenza through vaccination.


Subject(s)
Influenza A virus/immunology , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Precision Medicine , Adjuvants, Immunologic , Clinical Decision-Making , Disease Management , Humans , Influenza Vaccines/administration & dosage , Influenza Vaccines/adverse effects , Influenza Vaccines/classification , Influenza, Human/epidemiology , Precision Medicine/methods , Public Health Surveillance , Research , Vaccination
4.
Vaccine ; 39(29): 3940-3951, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34090697

ABSTRACT

Current detergent or ether-disrupted split vaccines (SVs) for influenza do not always induce adequate immune responses, especially in young children. This contrasts with the whole virus particle vaccines (WPVs) originally used against influenza that were immunogenic in both adults and children but were replaced by SV in the 1970s due to concerns with reactogenicity. In this study, we re-evaluated the immunogenicity of WPV and SV, prepared from the same batch of purified influenza virus, in cynomolgus macaques and confirmed that WPV is superior to SV in priming potency. In addition, we compared the ability of WPV and SV to induce innate immune responses, including the maturation of dendritic cells (DCs) in vitro. WPV stimulated greater production of inflammatory cytokines and type-I interferon in immune cells from mice and macaques compared to SV. Since these innate responses are likely triggered by the activation of pattern recognition receptors (PRRs) by viral RNA, the quantity and quality of viral RNA in each vaccine were assessed. Although the quantity of viral RNA was similar in the two vaccines, the amount of viral RNA of a length that can be recognized by PRRs was over 100-fold greater in WPV than in SV. More importantly, 1000-fold more viral RNA was delivered to DCs by WPV than by SV when exposed to preparations containing the same amount of HA protein. Furthermore, WPV induced up-regulation of the DC maturation marker CD86 on murine DCs, while SV did not. The present results suggest that the activation of antigen-presenting DCs, by PRR-recognizable viral RNA contained in WPV is responsible for the effective priming potency of WPV observed in naïve mice and macaques. WPV is thus recommended as an alternative option for seasonal influenza vaccines, especially for children.


Subject(s)
Influenza Vaccines , Orthomyxoviridae Infections , Orthomyxoviridae , Animals , Antibodies, Viral , Antigen-Presenting Cells , Mice , Orthomyxoviridae Infections/prevention & control , RNA, Viral , Vaccines, Inactivated , Virion
5.
Nat Commun ; 12(1): 2691, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33976217

ABSTRACT

How innate and adaptive immune responses work in concert to resolve influenza disease is yet to be fully investigated in one single study. Here, we utilize longitudinal samples from patients hospitalized with acute influenza to understand these immune responses. We report the dynamics of 18 important immune parameters, related to clinical, genetic and virological factors, in influenza patients across different severity levels. Influenza disease correlates with increases in IL-6/IL-8/MIP-1α/ß cytokines and lower antibody responses. Robust activation of circulating T follicular helper cells correlates with peak antibody-secreting cells and influenza heamaglutinin-specific memory B-cell numbers, which phenotypically differs from vaccination-induced B-cell responses. Numbers of influenza-specific CD8+ or CD4+ T cells increase early in disease and retain an activated phenotype during patient recovery. We report the characterisation of immune cellular networks underlying recovery from influenza infection which are highly relevant to other infectious diseases.


Subject(s)
Antibody Formation/immunology , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cytokines/immunology , Influenza, Human/immunology , T-Lymphocytes, Helper-Inducer/immunology , Cohort Studies , Cytokines/metabolism , Hospitalization/statistics & numerical data , Humans , Influenza A virus/classification , Influenza A virus/genetics , Influenza A virus/physiology , Influenza Vaccines/immunology , Influenza, Human/virology , Middle Aged , Phylogeny , Vaccination/methods
6.
JCI Insight ; 6(5)2021 03 08.
Article in English | MEDLINE | ID: mdl-33561017

ABSTRACT

The impact of respiratory virus infections on global health is felt not just during a pandemic, but endemic seasonal infections pose an equal and ongoing risk of severe disease. Moreover, vaccines and antiviral drugs are not always effective or available for many respiratory viruses. We investigated how induction of effective and appropriate antigen-independent innate immunity in the upper airways can prevent the spread of respiratory virus infection to the vulnerable lower airways. Activation of TLR2, when restricted to the nasal turbinates, resulted in prompt induction of innate immune-driven antiviral responses through action of cytokines, chemokines, and cellular activity in the upper but not the lower airways. We have defined how nasal epithelial cells and recruitment of macrophages work in concert and play pivotal roles to limit progression of influenza virus to the lungs and sustain protection for up to 7 days. These results reveal underlying mechanisms of how control of viral infection in the upper airways can occur and support the implementation of strategies that can activate TLR2 in nasal passages to provide rapid protection, especially for at-risk populations, against severe respiratory infection when vaccines and antiviral drugs are not always effective or available.


Subject(s)
Immunity, Innate/drug effects , Immunologic Factors/pharmacology , Influenza, Human , Lipopeptides/pharmacology , Lung , Respiratory Tract Infections , Toll-Like Receptor 2/metabolism , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Disease Models, Animal , Female , Humans , Immunologic Factors/therapeutic use , Influenza A virus , Influenza, Human/drug therapy , Influenza, Human/immunology , Influenza, Human/metabolism , Influenza, Human/virology , Lipopeptides/therapeutic use , Lung/drug effects , Lung/immunology , Lung/metabolism , Lung/virology , Male , Mice, Inbred C57BL , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/virology , Respiratory System/drug effects , Respiratory System/immunology , Respiratory System/metabolism , Respiratory System/virology , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/immunology , Respiratory Tract Infections/metabolism , Respiratory Tract Infections/virology , Toll-Like Receptor 2/agonists
7.
Immunol Cell Biol ; 99(1): 97-106, 2021 01.
Article in English | MEDLINE | ID: mdl-32741011

ABSTRACT

Influenza remains a significant global public health burden, despite substantial annual vaccination efforts against circulating virus strains. As a result, novel vaccine approaches are needed to generate long-lasting and universal broadly cross-reactive immunity against distinct influenza virus strains and subtypes. Several new vaccine candidates are currently under development and/or in clinical trials. The successful development of new vaccines requires testing in animal models, other than mice, which capture the complexity of the human immune system. Importantly, following vaccination or challenge, the assessment of adaptive immunity at the antigen-specific level is particularly informative. In this study, using peripheral blood mononuclear cells (PBMCs) from cynomolgus macaques, we describe detection methods and in-depth analyses of influenza virus-specific B cells by recombinant hemagglutinin probes and flow cytometry, as well as the detection of influenza virus-specific CD8+ and CD4+ T cells by stimulation with live influenza A virus and intracellular cytokine staining. We highlight the potential of these assays to be used with PBMCs from other macaque species, including rhesus macaques, pigtail macaques and African green monkeys. We also demonstrate the use of a human cytometric bead array kit in detecting inflammatory cytokines and chemokines from cynomolgus macaques to assess cytokine/chemokine milieu. Overall, the detection of influenza virus-specific B and T cells, together with inflammatory responses, as described in our study, provides useful insights for evaluating novel influenza vaccines. Our data deciphering immune responses toward influenza viruses can be also adapted to understanding immunity to other infections or vaccination approaches in macaque models.


Subject(s)
Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Animals , Antibodies, Viral , Chlorocebus aethiops , Flow Cytometry , Hemagglutinin Glycoproteins, Influenza Virus , Humans , Leukocytes, Mononuclear , Macaca mulatta , Mice , T-Lymphocytes , Vaccination
8.
Viruses ; 11(10)2019 10 04.
Article in English | MEDLINE | ID: mdl-31590265

ABSTRACT

Circulating avian influenza viruses pose a significant threat, with human infections occurring infrequently but with potentially severe consequences. To examine the dynamics and locale of the adaptation process of avian influenza viruses when introduced to a mammalian host, we infected ferrets with H5N1 viruses. As expected, all ferrets infected with the human H5N1 isolate A/Vietnam/1203/2004 showed severe disease and virus replication outside the respiratory tract in multiple organs including the brain. In contrast infection of ferrets with the avian H5N1 virus A/Chicken/Laos/Xaythiani26/2006 showed a different collective pattern of infection; many ferrets developed and cleared a mild respiratory infection but a subset (25-50%), showed extended replication in the upper respiratory tract and developed infection in distal sites. Virus from these severely infected ferrets was commonly found in tissues that included liver and small intestine. In most instances the virus had acquired the common virulence substitution PB2 E627K but, in one case, a previously unidentified combination of two amino acid substitutions at PB2 S489P and NP V408I, which enhanced polymerase activity, was found. We noted that virus with high pathogenicity adaptations could be dominant in an extra-respiratory site without being equally represented in the nasal wash. Further ferret passage of these mutated viruses resulted in high pathogenicity in all ferrets. These findings illustrate the remarkable ability of avian influenza viruses that avoid clearance in the respiratory tract, to mutate towards a high pathogenicity phenotype during just a single passage in ferrets and also indicate a window of less than 5 days in which treatment may curtail systemic infection.


Subject(s)
Ferrets/virology , Influenza A Virus, H5N1 Subtype/physiology , Influenza in Birds/virology , Orthomyxoviridae Infections/virology , Amino Acid Substitution , Animals , Chickens , Chlorocebus aethiops , Disease Models, Animal , Humans , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza in Birds/metabolism , Influenza in Birds/pathology , Influenza, Human/virology , Liver/pathology , Mutagenesis, Site-Directed , Polymorphism, Single Nucleotide , Respiratory System , Vero Cells , Virulence , Virus Replication
9.
Viruses ; 11(8)2019 08 20.
Article in English | MEDLINE | ID: mdl-31434247

ABSTRACT

Innate antiviral factors in saliva play a role in protection against respiratory infections. We tested the anti-influenza virus activities of saliva samples taken from human infants, 1-12 months old, with no history of prior exposure to influenza. In contrast to the inhibitory activity we observed in mouse and ferret saliva, the activity of human infant saliva was complex, with both sialic acid-dependent and independent components, the proportion of which differed between individuals. Taken as a whole, we showed that the major anti-influenza activity of infant saliva is acquired over the first year of life and is associated with sialic acid-containing molecules. The activity of sialic acid-independent inhibitors was lower overall, more variable between individuals, and less dependent on age. The results show that the saliva of very young infants can provide a degree of protection against influenza, which may be critical in the absence of adaptive immunity.


Subject(s)
Antiviral Agents/pharmacology , Influenza A virus/drug effects , Saliva/chemistry , Animals , Antiviral Agents/chemistry , Female , Ferrets , Humans , Infant , Influenza A virus/genetics , Influenza A virus/physiology , Influenza, Human/virology , Male , Mice , N-Acetylneuraminic Acid/analysis , N-Acetylneuraminic Acid/pharmacology
10.
Nat Microbiol ; 4(11): 1781-1789, 2019 11.
Article in English | MEDLINE | ID: mdl-31332385

ABSTRACT

Influenza A viruses (IAVs) constitute a major threat to human health. The IAV genome consists of eight single-stranded viral RNA segments contained in separate viral ribonucleoprotein (vRNP) complexes that are packaged together into a single virus particle. The structure of viral RNA is believed to play a role in assembling the different vRNPs into budding virions1-8 and in directing reassortment between IAVs9. Reassortment between established human IAVs and IAVs harboured in the animal reservoir can lead to the emergence of pandemic influenza strains to which there is little pre-existing immunity in the human population10,11. While previous studies have revealed the overall organization of the proteins within vRNPs, characterization of viral RNA structure using conventional structural methods is hampered by limited resolution and an inability to resolve dynamic components12,13. Here, we employ multiple high-throughput sequencing approaches to generate a global high-resolution structure of the IAV genome. We show that different IAV genome segments acquire distinct RNA conformations and form both intra- and intersegment RNA interactions inside influenza virions. We use our detailed map of IAV genome structure to provide direct evidence for how intersegment RNA interactions drive vRNP cosegregation during reassortment between different IAV strains. The work presented here is a roadmap both for the development of improved vaccine strains and for the creation of a framework to 'risk assess' reassortment potential to better predict the emergence of new pandemic influenza strains.


Subject(s)
Genome, Viral , High-Throughput Nucleotide Sequencing/methods , Influenza A virus/chemistry , Animals , Cattle , Cell Line , Dogs , HEK293 Cells , Humans , Influenza A virus/genetics , Madin Darby Canine Kidney Cells , Models, Molecular , Nucleic Acid Conformation , Reassortant Viruses/chemistry , Reassortant Viruses/genetics , Sequence Analysis, RNA
11.
Mucosal Immunol ; 12(4): 1013-1024, 2019 07.
Article in English | MEDLINE | ID: mdl-31105268

ABSTRACT

Recurrent and persistent airway infections remain prevalent in patients with primary immunodeficiency (PID), despite restoration of serum immunoglobulin levels by intravenous or subcutaneous plasma-derived IgG. We investigated the effectiveness of different human Ig isotype preparations to protect mice against influenza when delivered directly to the respiratory mucosa. Four polyvalent Ig preparations from pooled plasma were compared: IgG, monomeric IgA (mIgA), polymeric IgA-containing IgM (IgAM) and IgAM associated with the secretory component (SIgAM). To evaluate these preparations, a transgenic mouse expressing human FcαRI/CD89 within the myeloid lineage was created. CD89 was expressed on all myeloid cells in the lung and blood except eosinophils, reflecting human CD89 expression. Intranasal administration of IgA-containing preparations was less effective than IgG in reducing pulmonary viral titres after infection of mice with A/California/7/09 (Cal7) or the antigenically distant A/Puerto Rico/8/34 (PR8) viruses. However, IgA reduced weight loss and inflammatory mediator expression. Both IgG and IgA protected mice from a lethal dose of PR8 virus and for mIgA, this effect was partially CD89 dependent. Our data support the beneficial effect of topically applied Ig purified from pooled human plasma for controlling circulating and non-circulating influenza virus infections. This may be important for reducing morbidity in PID patients.


Subject(s)
Antigens, CD/genetics , Gene Expression , Immunoglobulin Isotypes/immunology , Receptors, Fc/genetics , Respiratory Tract Infections/immunology , Respiratory Tract Infections/prevention & control , Animals , Antibodies, Neutralizing/immunology , Antigens, CD/immunology , Cytokines/biosynthesis , Disease Models, Animal , Humans , Immunoglobulin A/immunology , Immunoglobulin A/metabolism , Immunoglobulin Isotypes/administration & dosage , Immunophenotyping , Mice , Mice, Transgenic , Myeloid Cells/immunology , Myeloid Cells/metabolism , Neutralization Tests , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Protein Binding/immunology , Receptors, Fc/immunology
12.
Vaccine ; 37(15): 2158-2166, 2019 04 03.
Article in English | MEDLINE | ID: mdl-30857932

ABSTRACT

In contrast to current ether- or detergent-disrupted "split" vaccines (SVs) for influenza, inactivated whole influenza virus particle vaccines (WPVs) retain the original virus structure and components and as such may confer similar immunity to natural infection. In a collaboration between academia and industry, the potential of WPV as a new seasonal influenza vaccine was investigated. Each of the four seasonal influenza vaccine manufacturers in Japan prepared WPVs and SVs from the same batches of purified influenza virus. Both mice and monkeys vaccinated with the WPVs exhibited superior immune responses to those vaccinated with the corresponding SVs. Vaccination with A/California/07/2009 (H1N1) WPV enabled mice to survive a lethal challenge dose of homologous virus whereas those vaccinated with SV succumbed to infection within 6 days. Furthermore, mice vaccinated with WPV induced substantial numbers of multifunctional CD8+ T cells, important for control of antigenically drifted influenza virus strains. In addition, cytokines and chemokines were detected at early time points in the sera of mice vaccinated with WPV but not in those animals vaccinated with SV. These results indicate that WPVs induce enhanced innate and adaptive immune responses compared to equivalent doses of SVs. Notably, WPV at one fifth of the dose of SV was able to induce potent immunity with limited production of IL-6, one of the pyrogenic cytokines. We thus propose that WPVs with balanced immunogenicity and safety may set a new global standard for seasonal influenza vaccines.


Subject(s)
Antibodies, Viral/blood , Influenza Vaccines/immunology , Interleukin-6/blood , Orthomyxoviridae Infections/prevention & control , Virion/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Chemokines/blood , Cytokines/blood , Female , Humans , Immunogenicity, Vaccine , Influenza A Virus, H1N1 Subtype , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Interleukin-6/immunology , Japan , Macaca , Male , Mice , Mice, Inbred C57BL , Orthomyxoviridae Infections/immunology , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunology
13.
Front Microbiol ; 10: 39, 2019.
Article in English | MEDLINE | ID: mdl-30761095

ABSTRACT

With the constant threat of emergence of a novel influenza virus pandemic, there must be continued evaluation of the molecular mechanisms that contribute to virulence. Although the influenza A virus surface glycoprotein neuraminidase (NA) has been studied mainly in the context of its role in viral release from cells, accumulating evidence suggests it plays an important, multifunctional role in virus infection and fitness. This review investigates the various structural features of NA, linking these with functional outcomes in viral replication. The contribution of evolving NA activity to viral attachment, entry and release of virions from infected cells, and maintenance of functional balance with the viral hemagglutinin are also discussed. Greater insight into the role of this important antiviral drug target is warranted.

14.
PLoS One ; 12(9): e0184732, 2017.
Article in English | MEDLINE | ID: mdl-28886201

ABSTRACT

TNF is a pro-inflammatory cytokine produced by both lymphoid and non-lymphoid cells. As a consequence of the widespread expression of its receptors (TNFR1 and 2), TNF plays a role in many important biological processes. In the context of influenza A virus (IAV) infection, TNF has variably been implicated in mediating immunopathology as well as suppression of the immune response. Although a number of cell types are able to produce TNF, the ability of CD8+ T cells to produce TNF following viral infection is a hallmark of their effector function. As such, the regulation and role of CD8+ T cell-derived TNF following viral infection is of great interest. Here, we show that the biphasic production of TNF by CD8+ T cells following in vitro stimulation corresponds to distinct patterns of epigenetic modifications. Further, we show that a global loss of TNF during IAV infection results in an augmentation of the peripheral virus-specific CD8+ T cell response. Subsequent adoptive transfer experiments demonstrated that this attenuation of the CD8+ T cell response was largely, but not exclusively, conferred by extrinsic TNF, with intrinsically-derived TNF making only modest contributions. In conclusion, TNF exerts an immunoregulatory role on CD8+ T cell responses following IAV infection, an effect that is largely mediated by extrinsically-derived TNF.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Receptors, Tumor Necrosis Factor/metabolism , Animals , Chromatin Immunoprecipitation , Female , Influenza A virus/pathogenicity , Mice , Mice, Inbred C57BL , RNA Polymerase II/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism , Receptors, Tumor Necrosis Factor, Type II/metabolism
15.
J Virol ; 91(14)2017 07 15.
Article in English | MEDLINE | ID: mdl-28446666

ABSTRACT

We previously identified a novel inhibitor of influenza virus in mouse saliva that halts the progression of susceptible viruses from the upper to the lower respiratory tract of mice in vivo and neutralizes viral infectivity in MDCK cells. Here, we investigated the viral target of the salivary inhibitor by using reverse genetics to create hybrid viruses with some surface proteins derived from an inhibitor-sensitive strain and others from an inhibitor-resistant strain. These viruses demonstrated that the origin of the viral neuraminidase (NA), but not the hemagglutinin or matrix protein, was the determinant of susceptibility to the inhibitor. Comparison of the NA sequences of a panel of H3N2 viruses with differing sensitivities to the salivary inhibitor revealed that surface residues 368 to 370 (N2 numbering) outside the active site played a key role in resistance. Resistant viruses contained an EDS motif at this location, and mutation to either EES or KDS, found in highly susceptible strains, significantly increased in vitro susceptibility to the inhibitor and reduced the ability of the virus to progress to the lungs when the viral inoculum was initially confined to the upper respiratory tract. In the presence of saliva, viral strains with a susceptible NA could not be efficiently released from the surfaces of infected MDCK cells and had reduced enzymatic activity based on their ability to cleave substrate in vitro This work indicates that the mouse has evolved an innate inhibitor similar in function, though not in mechanism, to what humans have created synthetically as an antiviral drug for influenza virus.IMPORTANCE Despite widespread use of experimental pulmonary infection of the laboratory mouse to study influenza virus infection and pathogenesis, to our knowledge, mice do not naturally succumb to influenza. Here, we show that mice produce their own natural form of neuraminidase inhibitor in saliva that stops the virus from reaching the lungs, providing a possible mechanism through which the species may not experience severe influenza virus infection in the wild. We show that the murine salivary inhibitor targets the outer surface of the influenza virus neuraminidase, possibly occluding entry to the enzymatic site rather than binding within the active site like commercially available neuraminidase inhibitors. This knowledge sheds light on how the natural inhibitors of particular species combat infection.


Subject(s)
Influenza A Virus, H3N2 Subtype/enzymology , Influenza A Virus, H3N2 Subtype/immunology , Lung/virology , Neuraminidase/antagonists & inhibitors , Respiratory System/virology , Saliva/immunology , Viral Proteins/antagonists & inhibitors , Animals , Disease Models, Animal , Dogs , Immunity, Innate , Influenza A Virus, H3N2 Subtype/genetics , Madin Darby Canine Kidney Cells , Mice , Neuraminidase/genetics , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Reverse Genetics , Viral Proteins/genetics
16.
J Virol ; 91(14)2017 07 15.
Article in English | MEDLINE | ID: mdl-28446669

ABSTRACT

It is possible to model the progression of influenza virus from the upper respiratory tract to the lower respiratory tract in the mouse using viral inoculum delivered in a restricted manner to the nose. In this model, infection with the A/Udorn/307/72 (Udorn) strain of virus results ultimately in high viral titers in both the trachea and lungs. In contrast, the A/Puerto Rico/8/34 (PR8) strain causes an infection that is almost entirely limited to the nasal passages. The factors that govern the progression of virus down the respiratory tract are not well understood. Here, we show that, while PR8 virus grows to high titers in the nose, an inhibitor present in the saliva blocks further progression of infection to the trachea and lungs and renders an otherwise lethal dose of virus completely asymptomatic. In vitro, the salivary inhibitor was capable of potent neutralization of PR8 virus and an additional 20 strains of type A virus and two type B strains that were tested. The exceptions were Udorn virus and the closely related H3N2 strains A/Port Chalmers/1/73 and A/Victoria/3/75. Characterization of the salivary inhibitor showed it to be independent of sialic acid and other carbohydrates for its function. This and other biochemical properties, together with its virus strain specificity and in vivo function, indicate that the mouse salivary inhibitor is a previously undescribed innate inhibitory molecule that may have evolved to provide pulmonary protection of the species from fatal influenza virus infection.IMPORTANCE Influenza A virus occasionally jumps from aquatic birds, its natural host, into mammals to cause outbreaks of varying severity, including pandemics in humans. Despite the laboratory mouse being used as a model to study influenza virus pathogenesis, natural outbreaks of influenza have not been reported in the species. Here, we shed light on one mechanism that might allow mice to be protected from influenza in the wild. We show that virus deposited in the mouse upper respiratory tract will not progress to the lower respiratory tract due to the presence of a potent inhibitor of the virus in saliva. Containing inhibitor-sensitive virus to the upper respiratory tract renders an otherwise lethal infection subclinical. This knowledge sheds light on how natural inhibitors may have evolved to improve survival in this species.


Subject(s)
Influenza A virus/immunology , Orthomyxoviridae Infections/immunology , Respiratory Tract Infections/immunology , Saliva/immunology , Animals , Disease Models, Animal , Immunity, Innate , Lung/virology , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, SCID , Nasal Cavity/virology , Trachea/virology
17.
J Immunol ; 197(11): 4392-4402, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27807194

ABSTRACT

G-CSF is a hemopoietic growth factor that has a role in steady state granulopoiesis, as well as in mature neutrophil activation and function. G-CSF- and G-CSF receptor-deficient mice are profoundly protected in several models of rheumatoid arthritis, and Ab blockade of G-CSF also protects against disease. To further investigate the actions of blocking G-CSF/G-CSF receptor signaling in inflammatory disease, and as a prelude to human studies of the same approach, we developed a neutralizing mAb to the murine G-CSF receptor, which potently antagonizes binding of murine G-CSF and thereby inhibits STAT3 phosphorylation and G-CSF receptor signaling. Anti-G-CSF receptor rapidly halted the progression of established disease in collagen Ab-induced arthritis in mice. Neutrophil accumulation in joints was inhibited, without rendering animals neutropenic, suggesting an effect of G-CSF receptor blockade on neutrophil homing to inflammatory sites. Consistent with this, neutrophils in the blood and arthritic joints of anti-G-CSF receptor-treated mice showed alterations in cell adhesion receptors, with reduced CXCR2 and increased CD62L expression. Furthermore, blocking neutrophil trafficking with anti-G-CSF receptor suppressed local production of proinflammatory cytokines (IL-1ß, IL-6) and chemokines (KC, MCP-1) known to drive tissue damage. Differential gene expression analysis of joint neutrophils showed a switch away from an inflammatory phenotype following anti-G-CSF receptor therapy in collagen Ab-induced arthritis. Importantly, G-CSF receptor blockade did not adversely affect viral clearance during influenza infection in mice. To our knowledge, we describe for the first time the effect of G-CSF receptor blockade in a therapeutic model of inflammatory joint disease and provide support for pursuing this therapeutic approach in treating neutrophil-associated inflammatory diseases.


Subject(s)
Antibodies, Neutralizing/pharmacology , Arthritis, Experimental/drug therapy , Gene Expression Regulation/drug effects , Neutrophil Infiltration/drug effects , Neutrophils/immunology , Receptors, Granulocyte Colony-Stimulating Factor/antagonists & inhibitors , Animals , Arthritis, Experimental/genetics , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology , Cytokines/genetics , Cytokines/immunology , Gene Expression Regulation/immunology , Granulocyte Colony-Stimulating Factor/genetics , Granulocyte Colony-Stimulating Factor/immunology , Humans , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/genetics , Inflammation/immunology , Joints/immunology , Joints/pathology , Male , Mice , Mice, Knockout , Neutrophil Infiltration/genetics , Neutrophil Infiltration/immunology , Neutrophils/pathology , Receptors, Granulocyte Colony-Stimulating Factor/genetics , Receptors, Granulocyte Colony-Stimulating Factor/immunology
18.
J Virol ; 90(4): 1888-97, 2016 02 15.
Article in English | MEDLINE | ID: mdl-26656692

ABSTRACT

UNLABELLED: Although avian H5N1 influenza virus has yet to develop the capacity for human-to-human spread, the severity of the rare cases of human infection has warranted intensive follow-up of potentially exposed individuals that may require antiviral prophylaxis. For countries where antiviral drugs are limited, the World Health Organization (WHO) has developed a risk categorization for different levels of exposure to environmental, poultry, or human sources of infection. While these take into account the infection source, they do not account for the likely mode of virus entry that the individual may have experienced from that source and how this could affect the disease outcome. Knowledge of the kinetics and spread of virus after natural routes of exposure may further inform the risk of infection, as well as the likely disease severity. Using the ferret model of H5N1 infection, we compared the commonly used but artificial inoculation method that saturates the total respiratory tract (TRT) with virus to upper respiratory tract (URT) and oral routes of delivery, those likely to be encountered by humans in nature. We show that there was no statistically significant difference in survival rate with the different routes of infection, but the disease characteristics were somewhat different. Following URT infection, viral spread to systemic organs was comparatively delayed and more focal than after TRT infection. By both routes, severe disease was associated with early viremia and central nervous system infection. After oral exposure to the virus, mild infections were common suggesting consumption of virus-contaminated liquids may be associated with seroconversion in the absence of severe disease. IMPORTANCE: Risks for human H5N1 infection include direct contact with infected birds and frequenting contaminated environments. We used H5N1 ferret infection models to show that breathing in the virus was more likely to produce clinical infection than swallowing contaminated liquid. We also showed that virus could spread from the respiratory tract to the brain, which was associated with end-stage disease, and very early viremia provided a marker for this. With upper respiratory tract exposure, infection of the brain was common but hard to detect, suggesting that human neurological infections might be typically undetected at autopsy. However, viral spread to systemic sites was slower after exposure to virus by this route than when virus was additionally delivered to the lungs, providing a better therapeutic window. In addition to exposure history, early parameters of infection, such as viremia, could help prioritize antiviral treatments for patients most at risk of succumbing to infection.


Subject(s)
Disease Models, Animal , Disease Transmission, Infectious , Influenza A Virus, H5N1 Subtype/physiology , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology , Animals , Female , Ferrets , Male , Orthomyxoviridae Infections/mortality , Orthomyxoviridae Infections/transmission , Risk Assessment , Survival Analysis
19.
Immunol Cell Biol ; 94(1): 101-8, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26134269

ABSTRACT

When administered prophylactically, we show that the Toll-like receptor-2 (TLR-2) agonist PEG-Pam2Cys (pegylated-S-(2,3-bis(palmitoyloxy)propyl)cysteine) not only mediates potent anti-viral activity against influenza virus but also reduces the impact of secondary infections with Streptococcus pneumoniae (the pneumococcus) by reducing (i) pulmonary viral and bacterial burdens, (ii) the levels of proinflammatory cytokines that normally accompany influenza and S. pneumoniae secondary infections and (iii) the vascular permeability of the pulmonary tract that can allow bacterial invasion of the blood in mice. We also show that an inactivated detergent-disrupted influenza virus vaccine formulated with the Pam2Cys-based adjuvant R4-Pam2Cys provides the host with both immediate and long-term protection against secondary pneumococcal infections following influenza virus infection through innate and specific immune mechanisms, respectively. Vaccinated animals generated influenza virus-specific immune responses that provided the host with long-term protection against influenza virus and its sequelae. This vaccine, which generates an immediate response, provides an additional countermeasure, which is ideal for use even in the midst of an influenza outbreak.


Subject(s)
Orthomyxoviridae Infections/complications , Pneumococcal Infections/complications , Administration, Intranasal , Animals , Antibodies, Viral/immunology , Antigens, Viral/immunology , Capillary Permeability/drug effects , Chemokines/metabolism , Epitopes/immunology , Female , Immunity/drug effects , Inflammation Mediators/metabolism , Lipopeptides/pharmacology , Lung/drug effects , Lung/pathology , Mice, Inbred BALB C , Mice, Inbred C57BL , Orthomyxoviridae/drug effects , Orthomyxoviridae Infections/blood , Orthomyxoviridae Infections/immunology , Pneumococcal Infections/blood , Pneumococcal Infections/immunology , Polyethylene Glycols/chemistry , Streptococcus pneumoniae/immunology , Survival Analysis , Vaccination
20.
mBio ; 6(6): e01024-15, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26507227

ABSTRACT

UNLABELLED: The continual threat to global health posed by influenza has led to increased efforts to improve the effectiveness of influenza vaccines for use in epidemics and pandemics. We show in this study that formulation of a low dose of inactivated detergent-split influenza vaccine with a Toll-like receptor 2 (TLR2) agonist-based lipopeptide adjuvant (R4Pam2Cys) provides (i) immediate, antigen-independent immunity mediated by the innate immune system and (ii) significant enhancement of antigen-dependent immunity which exhibits an increased breadth of effector function. Intranasal administration of mice with vaccine formulated with R4Pam2Cys but not vaccine alone provides protection against both homologous and serologically distinct (heterologous) viral strains within a day of administration. Vaccination in the presence of R4Pam2Cys subsequently also induces high levels of systemic IgM, IgG1, and IgG2b antibodies and pulmonary IgA antibodies that inhibit hemagglutination (HA) and neuraminidase (NA) activities of homologous but not heterologous virus. Improved primary virus nucleoprotein (NP)-specific CD8(+) T cell responses are also induced by the use of R4Pam2Cys and are associated with robust recall responses to provide heterologous protection. These protective effects are demonstrated in wild-type and antibody-deficient animals but not in those depleted of CD8(+) T cells. Using a contact-dependent virus transmission model, we also found that heterologous virus transmission from vaccinated mice to naive mice is significantly reduced. These results demonstrate the potential of adding a TLR2 agonist to an existing seasonal influenza vaccine to improve its utility by inducing immediate short-term nonspecific antiviral protection and also antigen-specific responses to provide homologous and heterologous immunity. IMPORTANCE: The innate and adaptive immune systems differ in mechanisms, specificities, and times at which they take effect. The innate immune system responds within hours of exposure to infectious agents, while adaptive immunity takes several days to become effective. Here we show, by using a simple lipopeptide-based TLR2 agonist, that an influenza detergent-split vaccine can be made to simultaneously stimulate and amplify both systems to provide immediate antiviral protection while giving the adaptive immune system time to implement long-term immunity. Both types of immunity induced by this approach protect against vaccine-matched as well as unrelated virus strains and potentially even against strains yet to be encountered. Conferring dual functionality to influenza vaccines is beneficial for improving community protection, particularly during periods between the onset of an outbreak and the time when a vaccine becomes available or in scenarios in which mass vaccination with a strain to which the population is immunologically naive is imperative.


Subject(s)
Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Lipopeptides/immunology , Adaptive Immunity , Adjuvants, Immunologic/administration & dosage , Administration, Intranasal , Animals , Antibodies, Viral/blood , CD8-Positive T-Lymphocytes/immunology , Cross Protection , Female , Humans , Immunoglobulin A/analysis , Immunologic Memory/immunology , Influenza Vaccines/administration & dosage , Influenza, Human/immunology , Influenza, Human/transmission , Influenza, Human/virology , Lipopeptides/administration & dosage , Lipopeptides/agonists , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/virology , Toll-Like Receptor 2/agonists , Toll-Like Receptor 2/chemistry , Toll-Like Receptor 2/immunology , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...