Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Med Eng Phys ; 129: 104192, 2024 07.
Article in English | MEDLINE | ID: mdl-38906574

ABSTRACT

Poor utilization of earplugs among military personnel may be due to discomfort caused by the occlusion effect (OE). The OE occurs when an earplug occludes the ear canal, thereby changing bone conduction (BC) hearing and amplifying physiological noises from the wearer. There is a need to understand and reduce the OE in the human ear. A 3D finite element model of the human ear including a 3-chambered spiral cochlea was employed to simulate the OE caused by foam and aerogel earplugs. 90 dB sound pressure was applied at the ear canal entrance and BC sound was applied as vibration of the canal bony wall. The model reported the ear canal pressure and the displacements of the stapes footplate and cochlear basilar membrane with and without earplugs. Without BC stimulation, the foam earplug showed a greater pressure attenuation than the aerogel earplug. However, the foam earplug results were more affected by BC stimulation, with a maximum sound pressure increase of 34 dB, compared to the 21.0 dB increase with the aerogel earplug. The aerogel earplug's lower OE demonstrates its promise as an earplug material. Future work with this model will examine BC sound transmission in the cochlea.


Subject(s)
Finite Element Analysis , Pressure , Humans , Ear Protective Devices , Ear , Bone Conduction , Models, Biological
2.
Ann Biomed Eng ; 51(5): 1106-1118, 2023 May.
Article in English | MEDLINE | ID: mdl-37036617

ABSTRACT

Blast-induced auditory trauma is a common injury in military service members and veterans that leads to hearing loss. While the inner ear response to blast exposure is difficult to characterize experimentally, computational models have advanced to predict blast wave transmission from the ear canal to the cochlea; however, published models have either straight or spiral cochlea with fluid-filled two chambers. In this paper, we report the recently developed 3D finite element (FE) model of the human ear mimicking the anatomical structure of the 3-chambered cochlea. The model consists of the ear canal, middle ear, and two and a half turns of the cochlea with three chambers separated by the Reissner's membrane (RM) and the basilar membrane (BM). The blast overpressure measured from human temporal bone experiments was applied at the ear canal entrance and the Fluent/Mechanical coupled fluid-structure interaction analysis was conducted in ANSYS software. The FE model-derived results include the pressure in the canal near the tympanic membrane (TM) and the intracochlear pressure at scala vestibuli, the TM displacement, and the stapes footplate (SFP) displacement, which were compared with experimentally measured data in human temporal bones. The validated model was used to predict the biomechanical response of the ear to blast overpressure: distributions of the maximum strain and stress within the TM, the BM displacement variation from the base to apex, and the energy flux or total energy entering the cochlea. The comparison of intracochlear pressure and BM displacement with those from the FE model of 2-chambered cochlea indicated that the 3-chamber cochlea model with the RM and scala media chamber improved our understanding of cochlea mechanics. This most comprehensive FE model of the human ear has shown its capability to predict the middle ear and cochlea responses to blast overpressure which will advance our understanding of auditory blast injury.


Subject(s)
Blast Injuries , Ear Canal , Humans , Finite Element Analysis , Ear Canal/physiology , Cochlea , Ear, Middle/physiology , Tympanic Membrane
3.
J Biomech Eng ; 144(1)2022 01 01.
Article in English | MEDLINE | ID: mdl-34318317

ABSTRACT

Blast-induced injuries affect the health of veterans, in which the auditory system is often damaged, and blast-induced auditory damage to the cochlea is difficult to quantify. A recent study modeled blast overpressure (BOP) transmission throughout the ear utilizing a straight, two-chambered cochlea, but the spiral cochlea's response to blast exposure has yet to be investigated. In this study, we utilized a human ear finite element (FE) model with a spiraled, two-chambered cochlea to simulate the response of the anatomical structural cochlea to BOP exposure. The FE model included an ear canal, middle ear, and two and half turns of two-chambered cochlea and simulated a BOP from the ear canal entrance to the spiral cochlea in a transient analysis utilizing fluid-structure interfaces. The model's middle ear was validated with experimental pressure measurements from the outer and middle ear of human temporal bones. The results showed high stapes footplate (SFP) displacements up to 28.5 µm resulting in high intracochlear pressures and basilar membrane (BM) displacements up to 43.2 µm from a BOP input of 30.7 kPa. The cochlea's spiral shape caused asymmetric pressure distributions as high as 4 kPa across the cochlea's width and higher BM transverse motion than that observed in a similar straight cochlea model. The developed spiral cochlea model provides an advancement from the straight cochlea model to increase the understanding of cochlear mechanics during blast and progresses toward a model able to predict potential hearing loss after blast.


Subject(s)
Blast Injuries , Cochlea , Cochlea/physiology , Ear Canal/physiology , Ear, Middle/physiology , Explosions , Finite Element Analysis , Humans
4.
Otol Neurotol Open ; 2(2): e010, 2022 Jun.
Article in English | MEDLINE | ID: mdl-38516326

ABSTRACT

Hypothesis: A 3D printed human temporal bone (TB) that is anatomically accurate would cost-effectively reproduce the responses observed in blast testing of human cadaveric TBs with and without passive hearing protection devices (HPDs). Background: HPDs have become critical personal protection equipment against auditory damage for service members. Acoustic test fixtures and human TBs have been used to test and develop HPDs; however, the lack of a cost-effective, standardized model impedes the improvement of HPDs. Methods: In this study, the 3D printed TB model was printed with flexible and rigid polymers and consisted of the ear canal, tympanic membrane (TM), ossicular chain, middle ear suspensory ligaments/muscle tendons, and middle ear cavity. The TM movement under acoustic stimulation was measured with laser Doppler vibrometry. The TB model was then exposed to blasts with or without HPDs and pressures at the ear canal entrance (P0) and near the TM in the ear canal (P1) were recorded. All results were compared with that measured in human TBs. Results: Results indicated that in the 3D printed TB, the attenuated peak pressures at P1 induced by HPDs ranged from 0.92 to 1.06 psi (170-171 dB) with blast peak pressures of 5.62-6.54 psi (186-187 dB) at P0, and measured results were within the mean and SD of published data. Vibrometry measurements also followed a similar trend as the published results. Conclusions: The 3D printed TB model accurately evaluated passive HPDs' protective function during blast and the potential for use as a model for acoustic transmission was investigated.

5.
Ann Biomed Eng ; 49(2): 757-768, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32926269

ABSTRACT

As an organ that is sensitive to pressure changes, the ear is often damaged when a person is subjected to blast exposures resulting in hearing loss due to tissue damage in the middle ear and cochlea. While observation of middle ear damage is non-invasive, examining the damage to the cochlea is difficult to quantify. Previous works have modeled the cochlear response often when subjected to an acoustic pressure input, but the inner ear mechanics have rarely been studied when the ear is exposed to a blast wave. In this study we aim to develop a finite element (FE) model of the entire ear, particularly the cochlea, for predicting the blast wave transmission from the ear canal to cochlea. We utilized a FE model of the ear, which includes the ear canal, middle ear, and uncoiled two-chambered cochlea, to simulate the cochlear response to blast overpressure (BOP) at the entrance of the ear canal with ANSYS Mechanical and Fluent in a fluid-structure interface coupled analysis in the time domain. This model was developed based on previous middle and inner ear models, and the cochlea was remeshed to improve BOP simulation performance. The FE model was validated using experimentally measured blast pressure transduction from the ear canal to the middle ear and cochlea in human cadaveric temporal bones. Results from the FE model showed significant displacements of the tympanic membrane, middle ear ossicles, and basilar membrane (BM). The stapes footplate displacement was observed to be as high as 60 µm, far exceeding the displacement during normal acoustic stimulation, when the 30 kPa (4.35 psi, 183 dB (SPL), Sound Pressure Level) of BOP was applied at the ear canal entrance. The large stapes movement caused pressures in the cochlea to exceed the physiological pressure level [< 10 Pa, 120 dB (SPL)] at a peak of 49.9 kPa, and the BM displacement was on the order of microns with a maximum displacement of 26.4 µm. The FE model of the entire human ear developed in this study provides a computational tool for prediction of blast wave transmission from the ear canal to cochlea and the future applications for assisting the prevention, diagnosis, and treatment of blast-induced hearing loss.


Subject(s)
Cochlea , Ear Canal , Explosions , Models, Biological , Tympanic Membrane , Blast Injuries , Finite Element Analysis , Hearing Loss , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL