Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 108(6): 1729-1739, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38199961

ABSTRACT

As soybean (Glycine max) production continues to expand in the United States and Canada, so do pathogens and pests that directly threaten soybean yield potential and economic returns for farmers. One such pathogen is the soybean cyst nematode (SCN; Heterodera glycines). SCN has traditionally been managed using SCN-resistant cultivars and rotation with nonhost crops, but the interaction of SCN with sudden death syndrome (SDS; caused by Fusarium virguliforme) in the field makes management more difficult. Nematode-protectant seed treatments have become options for SCN and SDS management. The objectives of this study were to evaluate nematode-protectant seed treatments for their effects on (i) early and full season SCN reproduction, (ii) foliar symptoms and root-rot caused by SDS, and (iii) soybean yield across environments accounting for the above factors. Using a standard protocol, field trials were implemented in 13 states and one Canadian province from 2019 to 2021 constituting 51 site-years. Six nematode-protectant seed treatment products were compared with a fungicide + insecticide base treatment and a nontreated check. Initial (at soybean planting) and final (at soybean harvest) SCN egg populations were enumerated, and SCN females were extracted from roots and counted at 30 to 35 days postplanting. Foliar disease index (FDX) and root rot caused by the SDS pathogen were evaluated, and yield data were collected for each plot. No seed treatment offered significant nematode control versus the nontreated check for in-season and full-season nematode response, no matter the initial SCN population or FDX level. Of all treatments, ILEVO (fluopyram) and Saltro (pydiflumetofen) provided more consistent increases in yield over the nontreated check in a broader range of SCN environments, even when FDX level was high.


Subject(s)
Glycine max , Plant Diseases , Seeds , Tylenchoidea , Glycine max/parasitology , Animals , Plant Diseases/parasitology , Plant Diseases/prevention & control , Tylenchoidea/drug effects , Tylenchoidea/physiology , Seeds/microbiology , Seeds/parasitology , Fusarium/physiology , Fusarium/drug effects , Canada
2.
Pathogens ; 12(7)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37513760

ABSTRACT

Three soybean field trials were conducted in Indiana to evaluate the integration of seed treatment, cultivar selection, and seeding rate on sudden death syndrome (SDS) root rot, pathogen load in the root, foliar symptoms, yield, and net return. Two soybean cultivars, one moderately resistant and one susceptible to SDS, were planted at three seeding rates (272,277 seeds/ha, 346,535 seeds/ha, and 420,792 seeds/ha). Fluopyram and pydiflumetofen seed treatments were applied to both cultivars, and the cultivars were then compared with a control. Low foliar SDS disease pressure was observed in our study. Seed treatment with either fluopyram or pydiflumetofen and the use of a moderately resistant cultivar decreased Fusarium virguliforme DNA concentration in the root relative to the control and the use of a susceptible cultivar. Fluopyram significantly reduced visual root rot severity by 8.8% and increased yield by 105 kg/ha relative to the control but was not different from pydiflumetofen. However, pydiflumetofen performed the same as the control with respect to root rot severity and yield. Findings from this study support the use of a seed treatment to protect roots from infection and the use of a moderately resistant cultivar planted at a seeding rate of 346,535 seeds/ha to protect yield and maximize net returns when a field has low foliar SDS pressure.

3.
Plant Dis ; 107(4): 1131-1138, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36190301

ABSTRACT

Seed treatments for the management of sudden death syndrome (SDS) caused by Fusarium virguliforme are available in the United States and Canada; however, side-by-side comparisons of these seed treatments are lacking. Sixteen field experiments were established in Illinois, Indiana, Iowa, Michigan, and Wisconsin, United States, and Ontario, Canada, in 2019 and 2020 to evaluate seed treatment combinations. Treatments included a nontreated check (NTC), fungicide and insecticide base seed treatments (base), fluopyram, base + fluopyram, base + saponin extracts from Chenopodium quinoa, base + fluopyram + heat-killed Burkholderia rinojenses, base + pydiflumetofen, base + thiabendazole + heat-killed B. rinojenses, and base + thiabendazole + C. quinoa extracts + heat-killed B. rinojenses. Treatments were tested on SDS moderately resistant and susceptible soybean cultivars at each location. Overall, NTC and base had the most root rot, most foliar disease index (FDX), and lowest yield. Base + fluopyram and base + pydiflumetofen were most effective for managing SDS. Moderately resistant cultivars reduced FDX in both years but visual root rot was greater on the moderately resistant than the susceptible cultivars in 2020. Yield response to cultivar was also inconsistent between the 2 years. In 2020, the susceptible cultivar provided significantly more yield than the moderately resistant cultivar. Treatment effect for root rot and FDX was similar in field and greenhouse evaluations. These results reinforce the need to include root rot evaluations in addition to foliar disease evaluations in the breeding process for resistance to F. virguliforme and highlights the importance of an integrated SDS management plan because not a single management tactic alone provides adequate control of the disease.


Subject(s)
Fungicides, Industrial , Glycine max , United States , Fungicides, Industrial/pharmacology , Thiabendazole , Plant Diseases/prevention & control , Plant Breeding , Ontario , Seeds , Death, Sudden
SELECTION OF CITATIONS
SEARCH DETAIL
...