Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Nutr ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38830472

ABSTRACT

BACKGROUND: Honey improves probiotic survival in vitro. However, if this effect translates to humans has not been investigated. OBJECTIVES: We aimed to determine effects of honey plus yogurt containing the probiotic Bifidobacterium animalis subsp. lactis DN-173 010/CNCM I-2494 (B. animalis) on intestinal transit time, probiotic enrichment, digestive health, mood, and cognition in adults. METHODS: Sixty-six healthy adults (34 female; 33.6 ± 9.8 y; 24.6 ± 3.0 kg/m2) in a crossover trial were randomly assigned to 2-wk yogurt conditions in a counterbalanced order with ≥4-wk washout: 1) Honey (HON): yogurt plus honey and 2) Negative Control (NC): heat-treated yogurt plus sugar. Of the participants, n = 62 completed the trial, and n = 37 (17 female; 32.0 ± 8.3 y; 25.0 ± 2.9 kg/m2) elected to enroll in a third condition (a nonrandomized study extension) after ≥4-wk washout with a reference Positive Control (PC): yogurt plus sugar. At baseline and end of each of the 3 conditions, intestinal transit time was measured with dye capsules; probiotic abundance with fecal DNA 16S sequencing; digestive health with symptom/function records, Bristol stool consistency, Gastrointestinal Tolerability, and Gastrointestinal Quality of Life Index; mood with Positive and Negative Affect Schedule-Short Form, Depression Anxiety Stress Scales-42, Patient-Reported Outcomes Measurement Information System questionnaires, and an emotional image task; and cognition with a spatial reconstruction task. Data were analyzed using linear mixed-effects models (LMMs) with significance at P ≤ 0.05. Baseline and end data were included in the LMM, with fixed effects being treatment, time, treatment by time interaction, and baseline covariate, and the random effect being the participant. RESULTS: B. animalis was enriched in HON (d = 3.54; P = 0.0002) compared to controls with linear discriminant analysis effect size. Intestinal transit time, gastrointestinal health, mood, and cognition did not differ between conditions (LMM: Ps > 0.05). CONCLUSIONS: Yogurt + honey enriched B. animalis but did not reduce intestinal transit time or have other functional gastrointestinal, mood, or cognitive effects in adults. This trial was registered at www. CLINICALTRIALS: gov as NCT04187950 and NCT04901390.

2.
Methods Mol Biol ; 2507: 111-141, 2022.
Article in English | MEDLINE | ID: mdl-35773580

ABSTRACT

Structural and functional eukaryotic membrane protein research continues to grow at an increasing rate, placing greater significance on leveraging productive protein expression pipelines to feed downstream studies. Bacterial expression systems (e.g., E. coli) are often the preferred system due to their simple growth conditions, relative simplicity in experimental workflow, low overall cost per liter of cell growth, and ease of genetic manipulation. However, overproduction success of eukaryotic membrane proteins in bacterial systems is hindered by the limited native processing ability of bacterial systems for important protein folding interactions (e.g., disulfide bonds), post-translational modifications (e.g., glycosylation), and inherent disadvantages in protein trafficking and folding machinery compared to other expression systems.In contrast, Saccharomyces cerevisiae expression systems combine positive benefits of simpler bacterial systems with those of more complex eukaryotic systems (e.g., mammalian cells). Benefits include inexpensive growth, robust DNA repair and recombination machinery, amenability to high density growths in bioreactors, efficient transformation, and robust post-translational modification machinery. These characteristics make S. cerevisiae a viable first-alternative when bacterial overproduction is insufficient. Thus, this chapter provides a framework, using methods that have proven successful in prior efforts, for overproducing membrane anchored or membrane integrated proteins in S. cerevisiae. The framework is designed to improve yields for all levels of overexpression expertise, providing optimization insights for the variety of processes involved in heterologous protein expression.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Animals , Escherichia coli/genetics , Glycosylation , Mammals/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Protein Processing, Post-Translational , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
3.
Methods Mol Biol ; 2507: 143-173, 2022.
Article in English | MEDLINE | ID: mdl-35773581

ABSTRACT

Membrane protein (MP) functional and structural characterization requires large quantities of high-purity protein for downstream studies. Barriers to MP characterization include ample overexpression, solubilization, and purification of target proteins while maintaining native activity and structure. These barriers can be overcome by utilizing an efficient purification protocol in a high-yield eukaryotic expression system such as Saccharomyces cerevisiae. S. cerevisiae offers improved protein folding and posttranslational modifications compared to prokaryotic expression systems. This chapter contains practices used to overcome barriers of solubilization and purification using S. cerevisiae that are broadly applicable to diverse membrane associated, and membrane integrated, protein targets.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Membrane Proteins/metabolism , Protein Folding , Protein Processing, Post-Translational , Protein Transport , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
4.
Sci Rep ; 12(1): 1595, 2022 01 31.
Article in English | MEDLINE | ID: mdl-35102166

ABSTRACT

Historically, humans have interacted with soils, which contain a rich source of microorganisms. Fruit and vegetable gardening is the primary interaction humans have with soil today. Animal research reveals that soil microorganisms can be transferred to the rodent intestine. However, studies on fecal and soil microbial changes associated with gardening in humans are lacking. The current case-controlled cohort study aimed to characterize the fecal and soil microbiota of gardening families (n = 10) and non-gardening (control) families (n = 9). Families included two adults and one child (5-18 years) for a total of 56 participants. All participants provided a fecal sample, soil sample, and diet history questionnaires before the gardening season (April) and during the peak of the gardening season (August). Healthy Eating Index (HEI-2015) scores and nutrient analysis were performed. Fecal and soil DNA were extracted and amplified. Sequence data were then processed and analyzed. Peak season gardening families tended to have greater fecal operational features, a greater Faith's Phylogenetic Diversity score, greater fiber intake, and higher abundances of fiber fermenting bacteria than peak control families. Soil endemic microbes were also shared with gardening participant's fecal samples. This study revealed that the fecal microbiota of gardening families differs from non-gardening families, and that there are detectable changes in the fecal microbial community of gardeners and their family members over the course of the gardening season. Additional research is necessary to determine if changes induced by gardening on the gut microbiota contribute to human health.


Subject(s)
Gardening
5.
Exp Eye Res ; 207: 108581, 2021 06.
Article in English | MEDLINE | ID: mdl-33865843

ABSTRACT

Fungal keratitis (FK) pathology is driven by both fungal growth and inflammation within the corneal stroma. Standard in vitro infection models ̶ involving co-culture of the pathogen and the corneal cells in tissue culture medium ̶ are sufficient to probe host responses to the fungus; however, they lack the physiological structure and nutrient composition of the stroma to accurately study fungal invasiveness and metabolic processes. We therefore sought to develop a culture model of FK that would allow for both host and fungal cell biology to be evaluated in parallel. Towards this end, we employed a previously described system in which primary human cornea fibroblasts (HCFs) are cultured on transwell membranes, whereupon they secrete a three-dimensional (3D) collagen matrix that resembles the human stroma. We demonstrated that two common mold agents of FK, Fusarium petroliphilum and Aspergillus fumigatus, penetrated into these constructs and caused a disruption of the collagen matrix that is characteristic of infection. HCF morphology appeared altered in the presence of fungus and electron microscopy revealed a clear internalization of fungal spores into these cells. Consistent with this apparent phagocyte-like activity of the HCFs, mRNA and protein levels for several pro-inflammatory cytokines/chemokines (including TNFα, IL-1ß, IL-6, and IL-8) were significantly upregulated compared to uninfected samples. We similarly found an upregulation of several HCF metalloproteases (MMPs), which are enzymes that breakdown collagen during wound healing and may further activate pro-inflammatory signaling molecules. Finally, several fungal collagenase genes were upregulated during growth in the constructs relative to growth in tissue culture media alone, suggesting a fungal metabolic shift towards protein catabolism. Taken together, our results indicate that this 3D-stromal model provides a physiologically relevant system to study host and fungal cell pathobiology during FK.


Subject(s)
Aspergillosis/microbiology , Corneal Keratocytes/microbiology , Corneal Ulcer/microbiology , Eye Infections, Fungal/microbiology , Fusariosis/microbiology , Host-Pathogen Interactions/physiology , Animals , Aspergillosis/metabolism , Aspergillosis/pathology , Aspergillus fumigatus/physiology , Cell Culture Techniques , Corneal Keratocytes/metabolism , Corneal Stroma/metabolism , Corneal Stroma/microbiology , Corneal Stroma/ultrastructure , Corneal Ulcer/metabolism , Corneal Ulcer/pathology , Cytokines/metabolism , Disease Models, Animal , Eye Infections, Fungal/metabolism , Eye Infections, Fungal/pathology , Fusariosis/metabolism , Fusariosis/pathology , Fusarium/physiology , Humans , Male , Matrix Metalloproteinases/metabolism , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Real-Time Polymerase Chain Reaction
6.
Protein Sci ; 30(1): 262-269, 2021 01.
Article in English | MEDLINE | ID: mdl-33179363

ABSTRACT

PyMOL commands are used to exert exquisite control over the appearance of a molecular model. This control has made PyMOL popular for making images of protein structures for publications and presentations. However, many users have poor recall of the commands due to infrequent use of PyMOL. This poor recall hinders the writing of new code in scripts. One solution is to build the new script by using code fragments as templates for modular parts of the task at hand. The code fragments can be accessed from a library while writing the code from inside a text editor (e.g., Visual Studio Code, Vim, and Emacs). We developed a library of PyMOL code templates or snippets called pymolsnips to ease the writing of PyMOL code in scripts. We made pymolsnips available on GitHub in formats for 18 popular text editors. Most of the supported text editors are available for Mac, Windows, and Linux operating systems. The GitHub site includes animations that complement the instructions for installing the library for each text editor. We expect that the library will help many PyMOL users to be more productive when writing PyMOL script files.


Subject(s)
Models, Molecular , Programming Languages , User-Computer Interface
7.
J Trauma Stress ; 29(6): 537-545, 2016 12.
Article in English | MEDLINE | ID: mdl-27859691

ABSTRACT

The literature on sexual assault (SA) typically has been generalized to women and children. However, both men and women experience SA. Research shows that not all individuals experience the negative impacts of SA in the same way. The ability to buffer the negative effects of SA may lie in specific protective factors that determine resilience. Resilience scales used in adult populations have not been validated for use in SA samples. The purpose of the present study was to replicate the factor structure of a resilience scale, the Scale of Protective Factors (SPF), in a sample of emerging adults (n = 571) and to validate the replicated model on a subsample of the participants who reported SA (n = 173). Additionally, we sought to examine gender differences in mental health outcomes including depression and anxiety, and the availability of protective factors that determine resilience among those participants who reported experiencing SA (n = 173) as compared to other forms of traumatic stress (n = 132). The SPF achieved good model fit in the larger emerging adult sample and adequate model fit was achieved in the SA subsample. Results indicated significant gender differences in mental health outcomes with η2 ranging between .03 and .21. Implications and future directions are discussed.


Subject(s)
Protective Factors , Resilience, Psychological , Sex Offenses/psychology , Stress Disorders, Traumatic/psychology , Adolescent , Adult Survivors of Child Abuse/psychology , Anxiety/psychology , Case-Control Studies , Crime Victims/psychology , Factor Analysis, Statistical , Female , Humans , Male , Reproducibility of Results , Sex Factors , Surveys and Questionnaires/standards , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...