Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 197
Filter
1.
Article in English | MEDLINE | ID: mdl-38967296

ABSTRACT

OBJECTIVE: The objective of this study was to identify the transcriptional landscape of insulin resistance (IR) in subcutaneous adipose tissue (SAT) in humans across the spectrum of obesity. METHODS: We used SAT RNA sequencing in 220 individuals with metabolic phenotyping. RESULTS: We identified a 35-gene signature with high predictive accuracy for homeostatic model of IR that was expressed across a variety of non-immune cell populations. We observed primarily "protective" IR associations for adipocyte transcripts and "deleterious" associations for macrophage transcripts, as well as a high concordance between SAT and visceral adipose tissue (VAT). Multiple SAT genes exhibited dynamic expression 5 years after weight loss surgery and with insulin stimulation. Using available expression quantitative trait loci in SAT and/or VAT, we demonstrated similar genetic effect sizes of SAT and VAT on type 2 diabetes and BMI. CONCLUSIONS: SAT is conventionally viewed as a metabolic buffer for lipid deposition during positive energy balance, whereas VAT is viewed as a dominant contributor to and prime mediator of IR and cardiometabolic disease risk. Our results implicate a dynamic transcriptional architecture of IR that resides in both immune and non-immune populations in SAT and is shared with VAT, nuancing the current VAT-centric concept of IR in humans.

2.
Diabetes ; 73(1): 38-50, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37874653

ABSTRACT

Metabolic effects of glucagon-like peptide 1 (GLP-1) receptor agonists are confounded by weight loss and not fully recapitulated by increasing endogenous GLP-1. We tested the hypothesis that GLP-1 receptor (GLP-1R) agonists exert weight loss-independent, GLP-1R-dependent effects that differ from effects of increasing endogenous GLP-1. Individuals with obesity and prediabetes were randomized to receive for 14 weeks the GLP-1R agonist liraglutide, a hypocaloric diet, or the dipeptidyl peptidase 4 (DPP-4) inhibitor sitagliptin. The GLP-1R antagonist exendin(9-39) and placebo were administered in a two-by-two crossover study during mixed-meal tests. Liraglutide and diet, but not sitagliptin, caused weight loss. Liraglutide improved insulin sensitivity measured by HOMA for insulin resistance (HOMA-IR), the updated HOMA model (HOMA2), and the Matsuda index after 2 weeks, prior to weight loss. Liraglutide decreased fasting and postprandial glucose levels, and decreased insulin, C-peptide, and fasting glucagon levels. In contrast, diet-induced weight loss improved insulin sensitivity by HOMA-IR and HOMA2, but not the Matsuda index, and did not decrease glucose levels. Sitagliptin increased endogenous GLP-1 and GIP values without altering insulin sensitivity or fasting glucose levels, but decreased postprandial glucose and glucagon levels. Notably, sitagliptin increased GIP without altering weight. Acute GLP-1R antagonism increased glucose levels in all groups, increased the Matsuda index and fasting glucagon level during liraglutide treatment, and increased endogenous GLP-1 values during liraglutide and sitagliptin treatments. Thus, liraglutide exerts rapid, weight loss-independent, GLP-1R-dependent effects on insulin sensitivity that are not achieved by increasing endogenous GLP-1. ARTICLE HIGHLIGHTS: Metabolic benefits of glucagon-like peptide 1 (GLP-1) receptor agonists are confounded by weight loss and are not fully achieved by increasing endogenous GLP-1 through dipeptidyl peptidase 4 (DPP-4) inhibition. We investigated weight loss-independent, GLP-1 receptor (GLP-1R)-dependent metabolic effects of liraglutide versus a hypocaloric diet or the DPP-4 inhibitor sitagliptin. GLP-1R antagonism with exendin(9-39) was used to assess GLP-1R-dependent effects during mixed meals. Liraglutide improved insulin sensitivity and decreased fasting and postprandial glucose prior to weight loss, and these benefits were reversed by exendin(9-39). GLP-1R agonists exert rapid, weight loss-independent, GLP-1R-dependent effects on insulin sensitivity not achieved by increasing endogenous GLP-1.


Subject(s)
Dipeptidyl-Peptidase IV Inhibitors , Insulin Resistance , Prediabetic State , Humans , Liraglutide/pharmacology , Liraglutide/therapeutic use , Glucagon-Like Peptide-1 Receptor/agonists , Dipeptidyl Peptidase 4/metabolism , Glucagon/metabolism , Prediabetic State/drug therapy , Diet, Reducing , Cross-Over Studies , Obesity/drug therapy , Blood Glucose/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Sitagliptin Phosphate/pharmacology , Sitagliptin Phosphate/therapeutic use , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Glucagon-Like Peptide 1/metabolism , Weight Loss
3.
Diabetes Obes Metab ; 25(8): 2340-2350, 2023 08.
Article in English | MEDLINE | ID: mdl-37188932

ABSTRACT

AIMS: To investigate the hypothesis that weight loss with the glucagon-like peptide-1 receptor agonist (GLP-1RA) liraglutide alone would lead to a greater reduction in the proportion of fat to lean tissue mass when compared to caloric restriction (CR) alone, as well as when compared to treatment with sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, that also enhances GLP-1 activity - to determine the independent effects of each treatment. METHODS: A total of 88 adults with obesity and prediabetes were randomized to 14 weeks of intervention with CR (-390 kcal/d), liraglutide (1.8 mg/d), or the dipeptidyl peptidase-4 inhibitor sitagliptin (100 mg/d) as a weight-neutral comparator. Changes between groups in appetite and hunger ratings measured via visual analogue scales, dietary intakes, body weight, body composition via dual energy x-ray absorptiometry, and resting energy expenditure via indirect calorimetry were assessed using the Kruskal-Wallis test or Pearson's chi-squared test. RESULTS: Weight loss ≥5% of baseline body weight occurred in 44% of participants in the CR group, 22% of the liraglutide group and 5% of the sitagliptin group (p = 0.02). The ratio of fat to lean mass decreased by 6.5% in the CR group, 2.2% in the liraglutide group, and 0% in the sitagliptin group (p = 0.02). Visceral fat reduced by 9.5% in the CR group, 4.8% in the liraglutide group, and 0% in the sitagliptin group (p = 0.04). A spontaneous reduction in dietary simple carbohydrates in the CR group was associated with improved homeostatic model assessment of insulin resistance score (HOMA-IR). CONCLUSIONS: Although both liraglutide and CR are valuable strategies for cardiometabolic risk reduction, CR was associated with greater weight loss and more favourable improvements in body composition than treatment with liraglutide alone. Differences in the response to each of these interventions enables patients to be stratified to the most optimal intervention for their personal risk factors.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Prediabetic State , Humans , Adult , Liraglutide/therapeutic use , Glucagon-Like Peptide-1 Receptor/agonists , Prediabetic State/drug therapy , Prediabetic State/complications , Caloric Restriction , Appetite , Diabetes Mellitus, Type 2/complications , Hypoglycemic Agents/adverse effects , Sitagliptin Phosphate/therapeutic use , Obesity/complications , Obesity/drug therapy , Obesity/chemically induced , Dipeptidyl-Peptidase IV Inhibitors/adverse effects , Body Weight , Eating , Body Fat Distribution , Weight Loss , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Cardiovascular Diseases/complications
4.
BMC Nephrol ; 24(1): 134, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37170244

ABSTRACT

INTRODUCTION: Intradialytic hypotension (IDH) is a common clinical complication and is associated with increased morbidity and mortality in patients undergoing maintenance hemodialysis (MHD). The pathogenesis of IDH has been attributed to the rapid reduction of plasma volume during hemodialysis and the inadequate compensatory mechanisms in response to hypovolemia, such as the lack of vasoconstriction. This may be due to the increased production of vasodilators, such as bradykinin. In this study we test the hypothesis that bradykinin B2 receptor blockade prevents intradialytic hypotension. METHODS: We performed a post-hoc analysis of a double-blind, placebo-controlled, randomized, 2 × 2 crossover clinical trial comparing the continuous infusion of icatibant, a bradykinin B2 receptor blocker, and placebo during hemodialysis. Icatibant or placebo was infused for 30 min before and during hemodialysis in 11 patients on MHD. RESULTS: Seven of the patients had IDH, defined as a reduction of systolic blood pressure equal to or greater than 20 mmHg during hemodialysis. Stratified analysis, based on the presence of IDH, revealed that icatibant prevented the decrease in blood pressure compared to placebo in patients with IDH [blood pressure at average nadir (2.5 h after hemodialysis): Placebo,114.3 ± 8.9 vs. icatibant, 125.6 ± 9.1 mmHg, mean ± S.E.M]. Icatibant did not affect blood pressure in the group of patients without IDH. CONCLUSION: Bradykinin B2 receptor blocker may prevent the occurrence of IDH. Further studies should evaluate the hemodynamic effects of icatibant during hemodialysis and the symptomatology associated with IDH.


Subject(s)
Hypotension , Receptors, Bradykinin , Humans , Receptors, Bradykinin/therapeutic use , Bradykinin/pharmacology , Bradykinin/therapeutic use , Hypotension/etiology , Hypotension/prevention & control , Renal Dialysis/adverse effects , Blood Pressure
5.
J Am Heart Assoc ; 12(4): e027693, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36752232

ABSTRACT

As the worldwide prevalence of overweight and obesity continues to rise, so too does the urgency to fully understand mediating mechanisms, to discover new targets for safe and effective therapeutic intervention, and to identify biomarkers to track obesity and the success of weight loss interventions. In 2016, the American Heart Association sought applications for a Strategically Focused Research Network (SFRN) on Obesity. In 2017, 4 centers were named, including Johns Hopkins University School of Medicine, New York University Grossman School of Medicine, University of Alabama at Birmingham, and Vanderbilt University Medical Center. These 4 centers were convened to study mechanisms and therapeutic targets in obesity, to train a talented cadre of American Heart Association SFRN-designated fellows, and to initiate and sustain effective and enduring collaborations within the individual centers and throughout the SFRN networks. This review summarizes the central themes, major findings, successful training of highly motivated and productive fellows, and the innovative collaborations and studies forged through this SFRN on Obesity. Leveraging expertise in in vitro and cellular model assays, animal models, and humans, the work of these 4 centers has made a significant impact in the field of obesity, opening doors to important discoveries, and the identification of a future generation of obesity-focused investigators and next-step clinical trials. The creation of the SFRN on Obesity for these 4 centers is but the beginning of innovative science and, importantly, the birth of new collaborations and research partnerships to propel the field forward.


Subject(s)
American Heart Association , Overweight , Animals , Humans , Overweight/epidemiology , Overweight/therapy , Obesity/epidemiology , Obesity/therapy , Causality , New York
6.
Hypertension ; 80(3): e46-e57, 2023 03.
Article in English | MEDLINE | ID: mdl-36621810

ABSTRACT

Contemporary anticancer drugs have significantly improved cancer survival at the expense of cardiovascular toxicities, including heart disease, thromboembolic disease, and hypertension. One of the most common side effects of these drugs is hypertension, especially in patients treated with vascular endothelial growth factor inhibitors, as well as tyrosine kinase inhibitors and proteasome inhibitors. Adjunctive therapy, including corticosteroids, calcineurin inhibitors, and nonsteroidal anti-inflammatories, as well as anti-androgen hormone therapy for prostate cancer, may further increase blood pressure in these patients. Cancer therapy-induced hypertension is often dose limiting, increases cardiovascular mortality in cancer survivors, and is usually reversible after interruption or discontinuation of treatment. The exact molecular mechanisms underlying hypertension are unclear, but recent discoveries indicate an important role for reduced nitric oxide generation, oxidative stress, endothelin-1, prostaglandins, endothelial dysfunction, increased sympathetic outflow, and microvascular rarefaction. In addition, genetic polymorphisms in vascular endothelial growth factor receptors are implicated in vascular endothelial growth factor inhibitor-induced hypertension. Diagnosis, management, and follow-up of cancer therapy-induced hypertension follow national hypertension guidelines because evidence-based clinical trials specifically addressing patients who develop hypertension as a result of cancer therapy are currently lacking. Rigorous baseline assessment of patients before therapy is started requires particular emphasis on assessing and treating cardiovascular risk factors. Hypertension management follows guidelines for the general population, although special attention should be given to rebound hypotension after termination of cancer therapy. Management of these complex patients requires collaborative care involving oncologists, cardiologists, hypertension specialists, primary care professionals, and pharmacists to ensure the optimal therapeutic effect from cancer treatment while minimizing competing cardiovascular toxicities.


Subject(s)
Antineoplastic Agents , Hypertension , Neoplasms , Male , Humans , Vascular Endothelial Growth Factor A , American Heart Association , Hypertension/chemically induced , Hypertension/drug therapy , Antineoplastic Agents/adverse effects , Angiogenesis Inhibitors/adverse effects , Neoplasms/drug therapy
7.
Diabetes Obes Metab ; 25(2): 570-580, 2023 02.
Article in English | MEDLINE | ID: mdl-36306151

ABSTRACT

AIM: To test the hypothesis that glucagon-like peptide-1 receptor (GLP-1R) agonists have beneficial effects on vascular endothelial function, fibrinolysis and inflammation through weight loss-independent mechanisms. MATERIALS AND METHODS: Individuals with obesity and prediabetes were randomized to 14 weeks of the GLP-1R agonist liraglutide, hypocaloric diet or the dipeptidyl peptidase-4 inhibitor sitagliptin in a 2:1:1 ratio. Treatment with drug was double blind and placebo-controlled. Measurements were made at baseline, after 2 weeks prior to significant weight loss and after 14 weeks. The primary outcomes were measures of endothelial function: flow-mediated vasodilation (FMD), plasminogen activator inhibitor-1 (PAI-1) and urine albumin-to-creatinine ratio (UACR). RESULTS: Eighty-eight individuals were studied (liraglutide N = 44, diet N = 22, sitagliptin N = 22). Liraglutide and diet reduced weight, insulin resistance and PAI-1, while sitagliptin did not. There was no significant effect of any treatment on endothelial vasodilator function measured by FMD. Post hoc subgroup analyses in individuals with baseline FMD below the median, indicative of greater endothelial dysfunction, showed an improvement in FMD by all three treatments. GLP-1R antagonism with exendin (9-39) increased fasting blood glucose but did not change FMD or PAI-1. There was no effect of treatment on UACR. Finally, liraglutide, but not sitagliptin or diet, reduced the chemokine monocyte chemoattractant protein-1 (MCP-1). CONCLUSION: Liraglutide and diet reduce weight, insulin resistance and PAI-1. Liraglutide, sitagliptin and diet do not change FMD in obese individuals with prediabetes with normal endothelial function. Liraglutide alone lowers the pro-inflammatory and pro-atherosclerotic chemokine MCP-1, indicating that this beneficial effect is independent of weight loss.


Subject(s)
Insulin Resistance , Prediabetic State , Humans , Incretins/therapeutic use , Liraglutide/therapeutic use , Plasminogen Activator Inhibitor 1 , Prediabetic State/complications , Prediabetic State/drug therapy , Fibrinolysis , Diet, Reducing , Obesity/complications , Obesity/drug therapy , Hypoglycemic Agents/therapeutic use , Sitagliptin Phosphate/therapeutic use , Weight Loss , Inflammation/drug therapy , Glucagon-Like Peptide-1 Receptor/agonists
8.
J Am Heart Assoc ; 11(19): e027099, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36193931

ABSTRACT

Background Pharmacy fill data are a practical tool for assessing medication nonadherence. However, previous studies have not compared the accuracy of pharmacy fill data to measurement of plasma drug levels, or chemical adherence testing (CAT). Methods and Results We performed a cross-sectional study in patients with uncontrolled hypertension in outpatient clinics in a safety net health system. Plasma samples were obtained for measurement of common cardiovascular drugs, including calcium channel blockers, thiazide diuretics, beta blockers, angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, and statins, using liquid chromatography mass spectrometry. Proportion of days covered (PDC), a method for tracking pharmacy fill data, was calculated via linkages with Surescripts, and its diagnostic test characteristics were compared with CAT. Among 77 patients with uncontrolled hypertension, 13 (17%) were nonadherent to at least 1 antihypertensive drug and 23 (37%) were nonadherent to statins by CAT. PDC was significantly lower in the nonadherent versus the adherent group by CAT only among patients prescribed an angiotensin-converting enzyme inhibitor/angiotensin receptor blocker or statin (all P<0.05) but not in patients prescribed other drug classes. The sensitivity and specificity of PDC in detecting nonadherence to angiotensin-converting enzyme inhibitors/angiotensin receptor blockers and statin drugs by CAT were 75% to 82% and 56% to 79%, respectively. The positive predictive value of PDC in detecting nonadherence was only 11% to 27% for antihypertensive drugs and 45% for statins. Conclusions PDC is useful in detecting nonadherence to angiotensin-converting enzyme inhibitors/angiotensin receptor blockers and statins but has limited usefulness in detecting nonadherence to calcium channel blockers, beta blockers, or thiazide diuretics and has a low positive predictive value for all drug classes.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , Hypertension , Pharmacy , Adrenergic beta-Antagonists/therapeutic use , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Antihypertensive Agents/therapeutic use , Calcium Channel Blockers/therapeutic use , Cross-Sectional Studies , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hypertension/drug therapy , Medication Adherence , Safety-net Providers , Sodium Chloride Symporter Inhibitors/therapeutic use
10.
Clin Chim Acta ; 534: 146-155, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35905838

ABSTRACT

Neuropeptide Y (NPY1-36) is a vasoconstrictor peptide co-secreted with catecholamines by sympathetic nerves, the adrenal medulla, and neoplasms such as pheochromocytomas and paragangliomas (PPGLs). It is produced by the intracellular cleavage of proNPY and metabolized into multiple fragments with distinct biological activities. NPY immunoassays for PPGL have a diagnostic sensitivity ranging from 33 to 100%, depending on the antibody used. We have validated a multiplex micro-UHPLC-MS/MS assay for the specific and sensitive quantification of proNPY, NPY1-39, NPY1-37, NPY1-36, NPY2-36, NPY3-36, NPY1-35, NPY3-35, and the C-flanking peptide of NPY (CPON) (collectively termed NPYs), and determined the NPYs reference intervals and concentrations in 32 PPGL patients before, during, and after surgery. Depending on the peptide measured, NPYs were above the upper reference limit (URL) in 20% to 67% of patients, whereas plasma free metanephrine and normetanephrine, the gold standard for PPGL, were above the URL in 40% and 87% of patients, respectively. Age, sex, tachycardia, and tumor localization were not correlated with NPYs. Plasma free metanephrines performed better than NPYs in the detection of PPGL, but NPYs may be a substitute for an early diagnosis of PPGL for patients that suffer from severe kidney impairment or receiving treatments that interfere with catecholamine reuptake.


Subject(s)
Adrenal Gland Neoplasms , Paraganglioma , Pheochromocytoma , Adrenal Gland Neoplasms/diagnosis , Healthy Volunteers , Humans , Metanephrine , Neuropeptide Y/metabolism , Paraganglioma/diagnosis , Pheochromocytoma/diagnosis , Protein Precursors , Tandem Mass Spectrometry
11.
Hypertension ; 79(4): 827-835, 2022 04.
Article in English | MEDLINE | ID: mdl-35045722

ABSTRACT

BACKGROUND: DPP4 (dipeptidyl peptidase-4) inhibitors comprise a class of oral diabetes medication that have the potential for off-target cardiovascular effects. We previously showed that DPP4 inhibition attenuates the hypotensive effect of acute ACE (angiotensin-converting enzyme) inhibition and increases norepinephrine. Here, we investigated the effects of DPP4 during sustained ACE inhibition compared with during therapy with an ARB (angiotensin receptor blocker) or calcium channel blocker (neutral comparator) in a randomized, double-blinded crossover study. METHODS: We enrolled 106 adults with type 2 diabetes and hypertension and 100 received intervention. Subjects were randomized to one of 3 blood pressure arms: ramipril, valsartan, or amlodipine for a total of 15 weeks and received 3 one-week crossover therapies in random order: placebo + placebo, sitagliptin + placebo, and sitagliptin + aprepitant separated by 4-week washout. RESULTS: We found that DPP4 inhibition increased norepinephrine during ramipril but did not increase blood pressure. Aprepitant, a NK1 (substance P) receptor blocker, lowered standing heart rate during renin-angiotensin-aldosterone system blockade with ramipril or valsartan. CONCLUSIONS: Increased catecholamines during concurrent ACE and DPP4 inhibition may contribute to cardiovascular complications in patients predisposed to heart failure.


Subject(s)
Cardiovascular Agents , Diabetes Mellitus, Type 2 , Adult , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/adverse effects , Angiotensins , Aprepitant/pharmacology , Aprepitant/therapeutic use , Blood Pressure , Cardiovascular Agents/therapeutic use , Catecholamines , Cross-Over Studies , Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl Peptidase 4/metabolism , Humans , Norepinephrine/pharmacology , Ramipril/pharmacology , Ramipril/therapeutic use , Renin-Angiotensin System , Sitagliptin Phosphate/pharmacology , Sitagliptin Phosphate/therapeutic use , Valsartan/pharmacology
12.
Prostaglandins Other Lipid Mediat ; 158: 106604, 2022 02.
Article in English | MEDLINE | ID: mdl-34922004

ABSTRACT

Adipose tissue contains a complex immune environment and is a central contributor to heightened systemic inflammation in obese persons. Epoxyeicosatrienoic acids (EETs) are lipid signaling molecules that decrease inflammation in obese animals, but their effect on inflammation in humans is unknown. The enzyme soluble epoxide hydrolase (sEH) hydrolyzes EETs to less active diols, and we hypothesized that pharmacologic sEH inhibition would decrease adipose inflammation in obese individuals. We treated obese prediabetic adults with the sEH inhibitor GSK2256294 versus placebo in a crossover design, collected subcutaneous abdominal adipose tissue via lipoaspiration and characterized the tissue T cell profile. Treatment with GSK2256294 decreased the percentage of pro-inflammatory T cells producing interferon-gamma (IFNγ), but not interleukin (IL)-17A, and decreased the amount of secreted tumor necrosis factor-alpha (TNFα). Understanding the contribution of the EET/sEH pathway to inflammation in obesity could lead to new strategies to modulate adipose and systemic inflammation.


Subject(s)
Epoxide Hydrolases , T-Lymphocytes , Adipose Tissue/metabolism , Animals , Cyclohexylamines/metabolism , Epoxide Hydrolases/metabolism , T-Lymphocytes/metabolism , Triazines
14.
J Card Fail ; 27(11): 1231-1239, 2021 11.
Article in English | MEDLINE | ID: mdl-34133968

ABSTRACT

BACKGROUND: B-type natriuretic peptide (BNP) immunoassays (BNPia) do not differentiate active and inactive forms. Inactive NT-proBNP is used to track heart failure (HF) during treatment with sacubitril/valsartan, which inhibits BNP degradation. Mass spectrometry (MS) may better assess effects of HF treatment on biologically active BNP1-32. METHODS AND RESULTS: We developed a MS assay with immediate protease inhibition to quantify BNP1-32 over a linear range, using labeled recombinant BNP standard. In 4 healthy volunteers, BNP1-32 by MS (BNPMS) increased from below the 5 pg/mL detection limit to 228 pg/mL after nesiritide. In patients with HF, BNPMS was measured in parallel with BNP and NT-proBNP immunoassays before and during sacubitril/valsartan treatment. BNPMS was 4.4-fold lower than BNPia in patients with HF. Among patients not taking sacubitril/valsartan and without end-stage renal disease, BNPMS correlated with BNPia (rs = 0.77, P < .001) and NT-proBNP (rs = 0.74, P < .001). After a median of 8 weeks on sacubitril/valsartan, active BNPMS levels decreased by 50% (interquartile range -98.3% to 41.7%, n = 22, P = .048) and correlated with NT-proBNP (rs = 0.64, P < .001), but not with BNPia (rs = 0.46, P = .057). CONCLUSIONS: Active BNP measured by MS accounts for only a small amount of BNP measured by immunoassays. Although decreased BNP production was anticipated to be masked by inhibition of degradation, levels of active BNP decreased during chronic sacubitril/valsartan treatment.


Subject(s)
Heart Failure , Natriuretic Peptide, Brain , Aminobutyrates , Biphenyl Compounds , Heart Failure/diagnosis , Heart Failure/drug therapy , Humans , Mass Spectrometry , Valsartan
18.
Diabetes Obes Metab ; 23(1): 281-286, 2021 01.
Article in English | MEDLINE | ID: mdl-33001556

ABSTRACT

Dipeptidyl peptidase-4 (DPP-4) inhibitors increase endogenous glucagon-like peptide-1 (GLP-1). We hypothesized that genetic variation in the gene encoding the GLP-1 receptor (GLP1R) could affect the metabolic response to DPP-4 inhibition. To evaluate the relationship between the GLP1R rs6923761 variant (G-to-A nucleic acid substitution) and metabolic responses, we performed mixed meal studies in individuals with type 2 diabetes mellitus and hypertension after 7-day treatment with placebo and the DPP-4 inhibitor sitagliptin. This analysis is a substudy of NCT02130687. The genotype frequency was 13:12:7 GG:GA:AA among individuals of European ancestry. Postprandial glucose excursion was significantly decreased in individuals carrying the rs6923761 variant (GA or AA) as compared with GG individuals during both placebo (P = 0.001) and sitagliptin treatment (P = 0.045), while intact GLP-1 levels were similar among the genotype groups. In contrast, sitagliptin lowered postprandial glucose to a greater degree in GG as compared with GA/AA individuals (P = 0.035). The relationship between GLP1R rs6923761 genotype and therapies that modulate GLP-1 signalling merits study in large populations.


Subject(s)
Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Blood Glucose , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Glucagon-Like Peptide-1 Receptor/genetics , Glucose , Humans , Sitagliptin Phosphate
19.
Environ Sci Technol ; 54(24): 16097-16107, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33226230

ABSTRACT

Dry anaerobic digestion (AD) of organic municipal solid waste (MSW) followed by composting of the residual digestate is a waste diversion strategy that generates biogas and soil amendment products. The AD-composting process avoids methane (CH4) emissions from landfilling, but emissions of other greenhouse gases, odorous/toxic species, and reactive compounds can affect net climate and air quality impacts. In situ measurements of key sources at two large-scale industrial facilities in California were conducted to quantify pollutant emission rates across the AD-composting process. These measurements established a strong relationship between flared biogas ammonia (NH3) content and emitted nitrogen oxides (NOx), indicating that fuel NOx formation is significant and dominates over the thermal or prompt NOx pathways when biogas NH3 concentration exceeds ∼200 ppm. Composting is the largest source of CH4, carbon dioxide (CO2), nitrous oxide (N2O), and carbon monoxide (CO) emissions (∼60-70%), and dominate NH3, hydrogen sulfide (H2S), and volatile organic compounds (VOC) emissions (>90%). The high CH4 contribution to CO2-equivalent emissions demonstrates that composting can be an important CH4 source, which could be reduced with improved aeration. Controlling greenhouse gas and toxic/odorous emissions from composting offers the greatest mitigation opportunities for reducing the climate and air quality impacts of the AD-composting process.


Subject(s)
Air Pollutants , Composting , Greenhouse Gases , Air Pollutants/analysis , Anaerobiosis , Carbon Dioxide/analysis , Greenhouse Effect , Greenhouse Gases/analysis , Methane/analysis , Nitrous Oxide/analysis , Solid Waste
SELECTION OF CITATIONS
SEARCH DETAIL
...