Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Biomed Eng ; 52(8): 2287-2307, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38734845

ABSTRACT

Regeneration of cartilage and bone tissues remains challenging in tissue engineering due to their complex structures, and the need for both mechanical support and delivery of biological repair stimuli. Therefore, the goal of this study was to develop a composite scaffold platform for anatomic chondral and osteochondral repair using heparin-based hydrogels to deliver small molecules within 3D-printed porous scaffolds that provide structure, stiffness, and controlled biologic delivery. We designed a mold-injection system to combine hydrolytically degradable hydrogels and 3D-printed scaffolds that could be employed rapidly (< 30 min) in operating room settings (~23 °C). Micro-CT analysis demonstrated the effectiveness of our injection system through homogeneously distributed hydrogel within the pores of the scaffolds. Hydrogels and composite scaffolds exhibited efficient loading (~94%) of a small positively charged heparin-binding molecule (crystal violet) with sustained release over 14 days and showed high viability of encapsulated porcine chondrocytes over 7 days. Compression testing demonstrated nonlinear viscoelastic behavior where tangent stiffness decreased with scaffold porosity (porous scaffold tangent stiffness: 70%: 4.9 MPa, 80%: 1.5 MPa, and 90%: 0.20 MPa) but relaxation was not affected. Lower-porosity scaffolds (70%) showed stiffness similar to lower ranges of trabecular bone (4-8 MPa) while higher-porosity scaffolds (80% and 90%) showed stiffness similar to auricular cartilage (0.16-2 MPa). Ultimately, this rapid composite scaffold fabrication method may be employed in the operating room and utilized to control biologic delivery within load-bearing scaffolds.


Subject(s)
Heparin , Hydrogels , Printing, Three-Dimensional , Tissue Scaffolds , Tissue Scaffolds/chemistry , Animals , Heparin/chemistry , Hydrogels/chemistry , Swine , Chondrocytes , Tissue Engineering , Skull/surgery , Porosity
3.
ACS Appl Mater Interfaces ; 12(8): 9070-9079, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32009376

ABSTRACT

The development of nonfouling and antimicrobial materials has shown great promise for reducing thrombosis and infection associated with medical devices with aims of improving device safety and decreasing the frequency of antibiotic administration. Here, the design of an antimicrobial, anti-inflammatory, and antithrombotic vascular catheter is assessed in vivo over 7 d in a rabbit model. Antimicrobial and antithrombotic activity is achieved through the integration of a nitric oxide donor, while the nonfouling surface is achieved using a covalently bound phosphorylcholine-based polyzwitterionic copolymer topcoat. The effect of sterilization on the nonfouling nature and nitric oxide release is presented. The catheters reduced viability of Staphylococcus aureus in long-term studies (7 d in a CDC bioreactor) and inflammation in the 7 d rabbit model. Overall, this approach provides a robust method for decreasing thrombosis, inflammation, and infections associated with vascular catheters.


Subject(s)
Anti-Bacterial Agents , Catheter-Related Infections/prevention & control , Catheters , Coated Materials, Biocompatible , Nitric Oxide , Staphylococcal Infections/prevention & control , Staphylococcus aureus/growth & development , Thrombosis/prevention & control , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Nitric Oxide/chemistry , Nitric Oxide/pharmacology , Rabbits
4.
Carbohydr Polym ; 220: 71-78, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31196552

ABSTRACT

In this work, we report a convenient method of grafting non-leachable bioactive amine functions onto the surface of bacterial cellulose (BC) nanofibrils, via a simple silylation treatment in water. Two different silylation protocols, involving different solvents and post-treatments were envisaged and compared, using 3-aminopropyl-trimethoxysilane (APS) and (2-aminoethyl)-3-aminopropyl-trimethoxysilane (AEAPS) as silylating agents. In aqueous and controlled conditions, water-leaching resistant amino functions could be successfully introduced into BC, via a simple freeze-drying process. The silylated material remained highly porous, hygroscopic and displayed sufficient thermal stability to support the sterilization treatments generally required in medical applications. The impact of the silylation treatment on the intrinsic anti-bacterial properties of BC was investigated against the growth of Escherichia coli and Staphylococcus aureus. The results obtained after the in vitro studies revealed a significant growth reduction of S. aureus within the material.


Subject(s)
Biomedical and Dental Materials , Cellulose/pharmacology , Gluconacetobacter/metabolism , Membranes/chemistry , Nanofibers , Silanes/chemistry , Anti-Bacterial Agents/pharmacology , Biomedical and Dental Materials/chemistry , Biomedical and Dental Materials/pharmacology , Escherichia coli/drug effects , Nanofibers/chemistry , Nanofibers/therapeutic use , Staphylococcus aureus/drug effects
5.
Poult Sci ; 94(2): 302-10, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25589078

ABSTRACT

Whole chicken breast was injected with potassium bicarbonate (PB), sodium bicarbonate (SB), and potassium lactate (K-lactate) and salt, alone or in combination at different concentration levels. The objectives were to 1) investigate the effects of different concentration of PB, SB, and PL on instrumental color, water-holding capacity (WHC), objective tenderness, expressible moisture, and moisture content and 2) evaluate whether sodium-containing ingredients can be replaced with potassium as a potential strategy to reduce total sodium content in the finished product. Results showed that chicken breast tissue marinated with SB and PB had greater moisture retention, display characteristics, and cooked product qualities than chicken breast tissue injected with water and the nonmarinated control. The L* values (lightness) did not change over the period of retail display and were not different compared to the control (P>0.05). The chicken breast enhanced with SB, PB, and K-lactate retained better retail display color than the controls (marinated with water and nonmarinated). Increasing the potassium bicarbonate concentration from 0.5 to 1.5% significantly improved the water-holding capacity (82.17 to 92.61%; P<0.05) and led to better cook yield (83.84 to 91.96%). Shear force values were lower at the 0.5% level for both SB and PB compared to the control. PB performed better on retail display and cooked meat quality than SB. This study suggests that chicken breast tissue can be marinated with KB as a healthier alternative to phosphate or SB.


Subject(s)
Bicarbonates/chemistry , Lactic Acid/chemistry , Meat/standards , Animals , Chickens , Food Preservation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...