Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Mol Neurodegener ; 13(1): 46, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30126445

ABSTRACT

BACKGROUND: Many neurodegenerative diseases are caused by nucleotide repeat expansions, but most expansions, like the C9orf72 'GGGGCC' (G4C2) repeat that causes approximately 5-7% of all amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) cases, are too long to sequence using short-read sequencing technologies. It is unclear whether long-read sequencing technologies can traverse these long, challenging repeat expansions. Here, we demonstrate that two long-read sequencing technologies, Pacific Biosciences' (PacBio) and Oxford Nanopore Technologies' (ONT), can sequence through disease-causing repeats cloned into plasmids, including the FTD/ALS-causing G4C2 repeat expansion. We also report the first long-read sequencing data characterizing the C9orf72 G4C2 repeat expansion at the nucleotide level in two symptomatic expansion carriers using PacBio whole-genome sequencing and a no-amplification (No-Amp) targeted approach based on CRISPR/Cas9. RESULTS: Both the PacBio and ONT platforms successfully sequenced through the repeat expansions in plasmids. Throughput on the MinION was a challenge for whole-genome sequencing; we were unable to attain reads covering the human C9orf72 repeat expansion using 15 flow cells. We obtained 8× coverage across the C9orf72 locus using the PacBio Sequel, accurately reporting the unexpanded allele at eight repeats, and reading through the entire expansion with 1324 repeats (7941 nucleotides). Using the No-Amp targeted approach, we attained > 800× coverage and were able to identify the unexpanded allele, closely estimate expansion size, and assess nucleotide content in a single experiment. We estimate the individual's repeat region was > 99% G4C2 content, though we cannot rule out small interruptions. CONCLUSIONS: Our findings indicate that long-read sequencing is well suited to characterizing known repeat expansions, and for discovering new disease-causing, disease-modifying, or risk-modifying repeat expansions that have gone undetected with conventional short-read sequencing. The PacBio No-Amp targeted approach may have future potential in clinical and genetic counseling environments. Larger and deeper long-read sequencing studies in C9orf72 expansion carriers will be important to determine heterogeneity and whether the repeats are interrupted by non-G4C2 content, potentially mitigating or modifying disease course or age of onset, as interruptions are known to do in other repeat-expansion disorders. These results have broad implications across all diseases where the genetic etiology remains unclear.


Subject(s)
C9orf72 Protein/genetics , DNA Repeat Expansion/genetics , Frontotemporal Dementia/genetics , Sequence Analysis, DNA/methods , Adult , Aged , Female , Humans , Male , Nucleic Acid Amplification Techniques/methods
2.
Neurol Genet ; 3(4): e161, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28660252

ABSTRACT

OBJECTIVE: We performed a genome-wide brain expression study to reveal the underpinnings of diseases linked to a repeat expansion in chromosome 9 open reading frame 72 (C9ORF72). METHODS: The genome-wide expression profile was investigated in brain tissue obtained from C9ORF72 expansion carriers (n = 32), patients without this expansion (n = 30), and controls (n = 20). Using quantitative real-time PCR, findings were confirmed in our entire pathologic cohort of expansion carriers (n = 56) as well as nonexpansion carriers (n = 31) and controls (n = 20). RESULTS: Our findings were most profound in the cerebellum, where we identified 40 differentially expressed genes, when comparing expansion carriers to patients without this expansion, including 22 genes that have a homeobox (e.g., HOX genes) and/or are located within the HOX gene cluster (top hit: homeobox A5 [HOXA5]). In addition to the upregulation of multiple homeobox genes that play a vital role in neuronal development, we noticed an upregulation of transthyretin (TTR), an extracellular protein that is thought to be involved in neuroprotection. Pathway analysis aligned with these findings and revealed enrichment for gene ontology processes involved in (anatomic) development (e.g., organ morphogenesis). Additional analyses uncovered that HOXA5 and TTR levels are associated with C9ORF72 variant 2 levels as well as with intron-containing transcript levels, and thus, disease-related changes in those transcripts may have triggered the upregulation of HOXA5 and TTR. CONCLUSIONS: In conclusion, our identification of genes involved in developmental processes and neuroprotection sheds light on potential compensatory mechanisms influencing the occurrence, presentation, and/or progression of C9ORF72-related diseases.

3.
Mov Disord ; 32(1): 115-123, 2017 01.
Article in English | MEDLINE | ID: mdl-27709685

ABSTRACT

BACKGROUND: Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are the most common genetic cause of Parkinson's disease (PD). Unexpectedly, tau pathology has been reported in a subset of LRRK2 mutation carriers. METHODS: To estimate the frequency of pathogenic LRRK2 mutations and to evaluate the association of common LRRK2 variants with risk of primary tauopathies, we studied 1039 progressive supranuclear palsy (PSP) and 145 corticobasal degeneration patients from the Mayo Clinic Florida brain bank and 1790 controls ascertained at Mayo Clinic. Sanger sequencing of LRRK2 exons 30, 31, 35, and 41 was performed in all patients, and genotyping of all 17 known exonic variants with minor allele frequency >0.5% was performed in patients and controls. RESULTS: LRRK2 mutational screening identified 2 known pathogenic mutations (p.G2019S and p.R1441C), each in 1 PSP patient, the novel p.A1413T mutation in a PSP patient and the rare p.R1707K mutation in a corticobasal degeneration patient. Both p.A1413T and p.R1707K mutations were predicted damaging by at least 2 of 3 prediction programs and affect evolutionary conserved sites of LRRK2. Association analysis using common LRRK2 variants only showed nominal association of the p.L153L variant with PSP. CONCLUSIONS: Our study confirms the presence of pathogenic and potentially pathogenic LRRK2 mutations in pathologically confirmed primary tauopathies, albeit with low frequency. In contrast to PD, common LRRK2 variants do not appear to play a major role in determining PSP and corticobasal degeneration risk. © 2016 International Parkinson and Movement Disorder Society.


Subject(s)
Basal Ganglia Diseases/genetics , Brain/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Tauopathies/genetics , Basal Ganglia Diseases/blood , Basal Ganglia Diseases/metabolism , Brain/pathology , Humans , Supranuclear Palsy, Progressive/blood , Supranuclear Palsy, Progressive/genetics , Supranuclear Palsy, Progressive/metabolism , Tauopathies/blood , Tauopathies/metabolism
4.
Neurobiol Aging ; 48: 222.e9-222.e15, 2016 12.
Article in English | MEDLINE | ID: mdl-27658901

ABSTRACT

We aimed to identify new candidate genes potentially involved in early-onset Alzheimer's disease (EOAD). Exome sequencing was conducted on 45 EOAD patients with either a family history of Alzheimer's disease (AD, <65 years) or an extremely early age at the onset (≤55 years) followed by multiple variant filtering according to different modes of inheritance. We identified 29 candidate genes potentially involved in EOAD, of which the gene TYROBP, previously implicated in AD, was selected for genetic and functional follow-up. Using 3 patient cohorts, we observed rare coding TYROBP variants in 9 out of 1110 EOAD patients, whereas no such variants were detected in 1826 controls (p = 0.0001), suggesting that at least some rare TYROBP variants might contribute to EOAD risk. Overexpression of the p.D50_L51ins14 TYROBP mutant led to a profound reduction of TREM2 expression, a well-established risk factor for AD. This is the first study supporting a role for genetic variation in TYROBP in EOAD, with in vitro support for a functional effect of the p.D50_L51ins14 TYROBP mutation on TREM2 expression.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Alzheimer Disease/genetics , Genetic Association Studies , Genetic Variation/genetics , Membrane Proteins/genetics , Adult , Aged , Aged, 80 and over , Cohort Studies , Down-Regulation/genetics , Exome/genetics , Female , Gene Expression/genetics , HeLa Cells , Humans , Male , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Middle Aged , Mutation/genetics , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Sequence Analysis
5.
Am J Neurodegener Dis ; 5(1): 94-101, 2016.
Article in English | MEDLINE | ID: mdl-27073747

ABSTRACT

Mutations in the gene encoding the presenilin-1 protein (PSEN1) were first discovered to cause Alzheimer's disease (AD) 20 years ago. Since then more than 200 different pathogenic mutations have been reported, including a p.Gly206Ala founder mutation in the Hispanic population. Here we report mutation analysis of known AD genes in a cohort of 27 early-onset (age of onset ≤65, age of death ≤70) Hispanic patients ascertained in Florida. The PSEN1 p.Gly206Ala mutation was identified in 13 out of 27 patients (48.1%), emphasizing the importance of this specific mutation in the etiology of early-onset AD in this population. One other patient carried the known PSEN1 p.Gly378Val mutation. Genotyping of the PSEN1 p.Gly206Ala and p.Gly378Val mutations in 63 late-onset Hispanic AD patients did not identify additional mutation carriers. All p.Gly206Ala mutation carriers shared rare alleles at two microsatellite markers flanking PSEN1 supporting a common founder. This study confirms the p.Gly206Ala variant as a frequent cause of early onset AD in the Hispanic population and for the first time reports the high frequency of this mutation in Hispanics in Florida.

6.
Acta Neuropathol ; 130(6): 863-76, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26437865

ABSTRACT

The loss of chromosome 9 open reading frame 72 (C9ORF72) expression, associated with C9ORF72 repeat expansions, has not been examined systematically. Three C9ORF72 transcript variants have been described thus far; the GGGGCC repeat is located between two non-coding exons (exon 1a and exon 1b) in the promoter region of transcript variant 2 (NM_018325.4) or in the first intron of variant 1 (NM_145005.6) and variant 3 (NM_001256054.2). We studied C9ORF72 expression in expansion carriers (n = 56) for whom cerebellum and/or frontal cortex was available. Using quantitative real-time PCR and digital molecular barcoding techniques, we assessed total C9ORF72 transcripts, variant 1, variant 2, variant 3, and intron containing transcripts [upstream of the expansion (intron 1a) and downstream of the expansion (intron 1b)]; the latter were correlated with levels of poly(GP) and poly(GA) proteins aberrantly translated from the expansion as measured by immunoassay (n = 50). We detected a decrease in expansion carriers as compared to controls for total C9ORF72 transcripts, variant 1, and variant 2: the strongest association was observed for variant 2 (quantitative real-time PCR cerebellum: median 43 %, p = 1.26e-06, and frontal cortex: median 58 %, p = 1.11e-05; digital molecular barcoding cerebellum: median 31 %, p = 5.23e-10, and frontal cortex: median 53 %, p = 5.07e-10). Importantly, we revealed that variant 1 levels greater than the 25th percentile conferred a survival advantage [digital molecular barcoding cerebellum: hazard ratio (HR) 0.31, p = 0.003, and frontal cortex: HR 0.23, p = 0.0001]. When focusing on intron containing transcripts, analysis of the frontal cortex revealed an increase of potentially truncated transcripts in expansion carriers as compared to controls [digital molecular barcoding frontal cortex (intron 1a): median 272 %, p = 0.003], with the highest levels in patients pathologically diagnosed with frontotemporal lobar degeneration. In the cerebellum, our analysis suggested that transcripts were less likely to be truncated and, excitingly, we discovered that intron containing transcripts were associated with poly(GP) levels [digital molecular barcoding cerebellum (intron 1a): r = 0.33, p = 0.02, and (intron 1b): r = 0.49, p = 0.0004] and poly(GA) levels [digital molecular barcoding cerebellum (intron 1a): r = 0.34, p = 0.02, and (intron 1b): r = 0.38, p = 0.007]. In summary, we report decreased expression of specific C9ORF72 transcripts and provide support for the presence of truncated transcripts as well as pre-mRNAs that may serve as templates for RAN translation. We further show that higher C9ORF72 levels may have beneficial effects, which warrants caution in the development of new therapeutic approaches.


Subject(s)
Cerebellum/metabolism , DNA Repeat Expansion , Frontal Lobe/metabolism , Proteins/genetics , Proteins/metabolism , Aged , Aged, 80 and over , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , C9orf72 Protein , Female , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Genetic Association Studies , Genetic Variation , Heterozygote , Humans , Introns , Male , Middle Aged , Motor Neuron Disease/genetics , Motor Neuron Disease/metabolism , Promoter Regions, Genetic , Survival Analysis , Tissue Banks
7.
Acta Neuropathol ; 130(2): 199-214, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25900293

ABSTRACT

Globular glial tauopathies (GGTs) are 4-repeat tauopathies neuropathologically characterized by tau-positive, globular glial inclusions, including both globular oligodendroglial inclusions and globular astrocytic inclusions. No mutations have been found in 25 of the 30 GGT cases reported in the literature who have been screened for mutations in microtubule associated protein tau (MAPT). In this report, six patients with GGT (four with subtype III and two with subtype I) were screened for MAPT mutations. They included 4 men and 2 women with a mean age at death of 73 years (55-83 years) and mean age at symptomatic onset of 66 years (50-77 years). Disease duration ranged from 5 to 14 years. All were homozygous for the MAPT H1 haplotype. Three patients had a positive family history of dementia, and a novel MAPT mutation (c.951G>C, p.K317N) was identified in one of them, a patient with subtype III. Recombinant tau protein bearing the lysine-to-asparagine substitution at amino acid residue 317 was used to assess functional significance of the variant on microtubule assembly and tau filament formation. Recombinant p.K317N tau had reduced ability to promote tubulin polymerization. Recombinant 3R and 4R tau bearing the p.K317N mutation showed decreased 3R tau and increased 4R tau filament assembly. These results strongly suggest that the p.K317N variant is pathogenic. Sequencing of MAPT should be considered in patients with GGT and a family history of dementia or movement disorder. Since several individuals in our series had a positive family history but no MAPT mutation, genetic factors other than MAPT may play a role in disease pathogenesis.


Subject(s)
Mutation , Tauopathies/genetics , tau Proteins/genetics , Aged , Aged, 80 and over , Brain/metabolism , Brain/pathology , Female , Genetic Predisposition to Disease , Humans , Male , Microscopy, Electrochemical, Scanning , Microtubules/metabolism , Middle Aged , Pedigree , Polymerization , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Tauopathies/metabolism , Tauopathies/pathology , Tubulin/metabolism , tau Proteins/isolation & purification , tau Proteins/metabolism
8.
Mol Neurodegener ; 9: 38, 2014 Sep 20.
Article in English | MEDLINE | ID: mdl-25239657

ABSTRACT

BACKGROUND: Hexanucleotide repeat expansions in chromosome 9 open reading frame 72 (C9ORF72) are causative for frontotemporal dementia (FTD) and motor neuron disease (MND). Substantial phenotypic heterogeneity has been described in patients with these expansions. We set out to identify genetic modifiers of disease risk, age at onset, and survival after onset that may contribute to this clinical variability. RESULTS: We examined a cohort of 330 C9ORF72 expansion carriers and 374 controls. In these individuals, we assessed variants previously implicated in FTD and/or MND; 36 variants were included in our analysis. After adjustment for multiple testing, our analysis revealed three variants significantly associated with age at onset (rs7018487 [UBAP1; p-value = 0.003], rs6052771 [PRNP; p-value = 0.003], and rs7403881 [MT-Ie; p-value = 0.003]), and six variants significantly associated with survival after onset (rs5848 [GRN; p-value = 0.001], rs7403881 [MT-Ie; p-value = 0.001], rs13268953 [ELP3; p-value = 0.003], the epsilon 4 allele [APOE; p-value = 0.004], rs12608932 [UNC13A; p-value = 0.003], and rs1800435 [ALAD; p-value = 0.003]). CONCLUSIONS: Variants identified through this study were previously reported to be involved in FTD and/or MND, but we are the first to describe their effects as potential disease modifiers in the presence of a clear pathogenic mutation (i.e. C9ORF72 repeat expansion). Although validation of our findings is necessary, these variants highlight the importance of protein degradation, antioxidant defense and RNA-processing pathways, and additionally, they are promising targets for the development of therapeutic strategies and prognostic tests.


Subject(s)
Frontotemporal Dementia/genetics , Motor Neuron Disease/genetics , Proteins/genetics , Adult , Age of Onset , Aged , Aged, 80 and over , C9orf72 Protein , DNA Repeat Expansion/genetics , Female , Frontotemporal Dementia/mortality , Genetic Predisposition to Disease , Genotype , Heterozygote , Humans , Male , Middle Aged , Motor Neuron Disease/mortality , Phenotype , Polymerase Chain Reaction , Proportional Hazards Models
9.
Neurobiol Aging ; 35(10): 2421.e13-7, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24866401

ABSTRACT

Repeat expansions in chromosome 9 open reading frame 72 (C9ORF72) are an important cause of both motor neuron disease (MND) and frontotemporal dementia (FTD). Currently, little is known about factors that could account for the phenotypic heterogeneity detected in C9ORF72 expansion carriers. In this study, we investigated 4 genes that could represent genetic modifiers: ataxin-2 (ATXN2), non-imprinted in Prader-Willi/Angelman syndrome 1 (NIPA1), survival motor neuron 1 (SMN1), and survival motor neuron 2 (SMN2). Assessment of these genes, in a unique cohort of 331 C9ORF72 expansion carriers and 376 control subjects, revealed that intermediate repeat lengths in ATXN2 possibly act as disease modifier in C9ORF72 expansion carriers; no evidence was provided for a potential role of NIPA1, SMN1, or SMN2. The effects of intermediate ATXN2 repeats were most profound in probands with MND or FTD/MND (2.1% vs. 0% in control subjects, p = 0.013), whereas the frequency in probands with FTD was identical to control subjects. Though intermediate ATXN2 repeats were already known to be associated with MND risk, previous reports did not focus on individuals with clear pathogenic mutations, such as repeat expansions in C9ORF72. Based on our present findings, we postulate that intermediate ATXN2 repeat lengths may render C9ORF72 expansion carriers more susceptible to the development of MND; further studies are needed, however, to validate our findings.


Subject(s)
DNA Repeat Expansion/genetics , Genetic Association Studies , Heterozygote , Nerve Tissue Proteins/genetics , Proteins/genetics , Adult , Ataxins , C9orf72 Protein , Cohort Studies , Frontotemporal Dementia/genetics , Humans , Male , Membrane Proteins/genetics , Middle Aged , Motor Neuron Disease/genetics , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 2 Protein/genetics
10.
Acta Neuropathol ; 127(3): 397-406, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24385136

ABSTRACT

Variants in transmembrane protein 106 B (TMEM106B) modify the disease penetrance of frontotemporal dementia (FTD) in carriers of progranulin (GRN) mutations. We investigated whether TMEM106B is also a genetic modifier of disease in carriers of chromosome 9 open reading frame 72 (C9ORF72) expansions. We assessed the genotype of 325 C9ORF72 expansion carriers (cohort 1), 586 FTD patients lacking C9ORF72 expansions [with or without motor neuron disease (MND); cohort 2], and a total of 1,302 controls for TMEM106B variants (rs3173615 and rs1990622) using MassArray iPLEX and Taqman genotyping assays. For our primary analysis, we focused on functional variant rs3173615, and employed a recessive genotypic model. In cohort 1, patients with C9ORF72 expansions showed a significantly reduced frequency of carriers homozygous for the minor allele as compared to controls [11.9 vs. 19.1 %, odds ratio (OR) 0.57, p = 0.014; same direction as carriers of GRN mutations]. The strongest evidence was provided by FTD patients (OR 0.33, p = 0.009) followed by FTD/MND patients (OR 0.38, p = 0.017), whereas no significant difference was observed in MND patients (OR 0.85, p = 0.55). In cohort 2, the frequency of carriers homozygous for the minor allele was not significantly reduced in patients as compared to controls (OR 0.77, p = 0.079); however, a significant reduction was observed when focusing on those patients with frontotemporal lobar degeneration and TAR DNA-binding protein 43 inclusions (FTLD-TDP; OR 0.26, p < 0.001). Our study identifies TMEM106B as the first genetic factor modifying disease presentation in C9ORF72 expansion carriers. Homozygosity for the minor allele protects carriers from developing FTD, but not from developing MND; similar effects are seen in FTLD-TDP patients with yet unknown genetic causes. These new findings show that the protective effects of TMEM106B are not confined to carriers of GRN mutations and might be relevant for prognostic testing, and as a promising therapeutic target for the entire spectrum of FTLD-TDP.


Subject(s)
Frontotemporal Dementia/genetics , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Proteins/genetics , Adult , Age of Onset , Aged , Aged, 80 and over , Alleles , C9orf72 Protein , Cohort Studies , DNA Repeat Expansion , DNA-Binding Proteins/metabolism , Female , Frontotemporal Dementia/complications , Frontotemporal Dementia/metabolism , Genetic Predisposition to Disease , Genotype , Heterozygote , Humans , Male , Middle Aged , Models, Genetic , Motor Neuron Disease/complications , Motor Neuron Disease/genetics , Motor Neuron Disease/metabolism , Polymorphism, Single Nucleotide
11.
Lancet Neurol ; 12(10): 978-88, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24011653

ABSTRACT

BACKGROUND: Hexanucleotide repeat expansions in chromosome 9 open reading frame 72 (C9ORF72) are the most common known genetic cause of frontotemporal dementia (FTD) and motor neuron disease (MND). We assessed whether expansion size is associated with disease severity or phenotype. METHODS: We did a cross-sectional Southern blot characterisation study (Xpansize-72) in a cohort of individuals with FTD, MND, both these diseases, or no clinical phenotype. All participants had GGGGCC repeat expansions in C9ORF72, and high quality DNA was available from one or more of the frontal cortex, cerebellum, or blood. We used Southern blotting techniques and densitometry to estimate the repeat size of the most abundant expansion species. We compared repeat sizes between different tissues using Wilcoxon rank sum and Wilcoxon signed rank tests, and between disease subgroups using Kruskal-Wallis rank sum tests. We assessed the association of repeat size with age at onset and age at collection using a Spearman's test of correlation, and assessed the association between repeat size and survival after disease onset using Cox proportional hazards regression models. FINDINGS: We included 84 individuals with C9ORF72 expansions: 35 had FTD, 16 had FTD and MND, 30 had MND, and three had no clinical phenotype. We focused our analysis on three major tissue subgroups: frontal cortex (available from 41 patients [21 with FTD, 11 with FTD and MND, and nine with MND]), cerebellum (40 patients [20 with FTD, 12 with FTD and MND, and eight with MND]), and blood (47 patients [15 with FTD, nine with FTD and MND, and 23 with MND] and three carriers who had no clinical phenotype). Repeat lengths in the cerebellum were smaller (median 12·3 kb [about 1667 repeat units], IQR 11·1-14·3) than those in the frontal cortex (33·8 kb [about 5250 repeat units], 23·5-44·9; p<0·0001) and those in blood (18·6 kb [about 2717 repeat units], 13·9-28·1; p=0·0002). Within these tissues, we detected no difference in repeat length between disease subgroups (cerebellum p=0·96, frontal cortex p=0·27, blood p=0·10). In the frontal cortex of patients with FTD, repeat length correlated with age at onset (r=0·63; p=0·003) and age at sample collection (r=0·58; p=0·006); we did not detect such a correlation in samples from the cerebellum or blood. When assessing cerebellum samples from the overall cohort, survival after disease onset was 4·8 years (IQR 3·0-7·4) in the group with expansions greater than 1467 repeat units (the 25th percentile of repeat lengths) versus 7·4 years (6·3-10·9) in the group with smaller expansions (HR 3·27, 95% CI 1·34-7·95; p=0·009). INTERPRETATION: We detected substantial variation in repeat sizes between samples from the cerebellum, frontal cortex, and blood, and longer repeat sizes in the cerebellum seem to be associated with a survival disadvantage. Our findings indicate that expansion size does affect disease severity, which--if replicated in other cohorts--could be relevant for genetic counselling. FUNDING: The ALS Therapy Alliance, the National Institute of Neurological Disorders and Stroke, the National Institute on Aging, the Arizona Department of Health Services, the Arizona Biomedical Research Commission, and the Michael J Fox Foundation for Parkinson's Research.


Subject(s)
DNA Repeat Expansion/genetics , Frontotemporal Dementia/genetics , Motor Neuron Disease/genetics , Proteins/genetics , Age of Onset , Aged , C9orf72 Protein , Cerebellum/metabolism , Cerebellum/pathology , Cohort Studies , Comorbidity , Cross-Sectional Studies , Female , Frontal Lobe/metabolism , Frontal Lobe/pathology , Frontotemporal Dementia/epidemiology , Frontotemporal Dementia/pathology , Genotype , Humans , Male , Middle Aged , Motor Neuron Disease/epidemiology , Motor Neuron Disease/pathology , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...