Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Vet Sci ; 9: 1058294, 2022.
Article in English | MEDLINE | ID: mdl-36458056

ABSTRACT

End-point and real-time avian metapneumovirus (AMPV) RT-PCRs have been developed to detect one or two of the four recognized subgroups (A,B,C, and D) simultaneously or for broad range AMPV detection. Current subgroup specific tests target variable areas of the genome which makes these PCRs sensitive to specificity defects as recently documented. In the current study, a single five-plex digital droplet RT-PCR targeting the conserved viral polymerase gene of AMPV, which is less prone to genetic drift, has been designed. This digital droplet RT-PCR was capable of identifying each of the four AMPV subgroups. Each subgroup was identified according to a specifically assigned fluorescent amplitude. Specificity, which was tested including 31 AMPV strains, non-AMPV avian viruses and closely related human respiratory viruses, was 100%. The specific limit of detection for extracted viral RNA was estimated between 1 and 3 copies/µl. This tool simplifies the number of tests required for AMPV genotype diagnostics and should be theoretically less effected by viral genome evolution due to its target region. Ultimately, application of this test will contribute to an improved understanding of the global geographic distribution and subgroup host range of field strains.

2.
Avian Pathol ; 51(3): 291-294, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35201915

ABSTRACT

Currently, turkey coronaviruses (TCoV) are isolated from homogenized intestines of experimentally infected embryos to ensure a maximum recovery of viral particles from all components of the intestines. However, the process of homogenization also ensures release of a significant amount of cellular RNAs into the sample that hinders downstream viral genome sequencing. This is especially the case for next generation sequencing (NGS) which sequences molecules at random. This characteristic means that the heavily abundant cellular RNA in the sample drowns out the minority viral RNA during the sequencing process and, consequently, very little to no viral genome data are obtained. To address this problem, a method was developed, in which 10 descendent isolates of the European strain of TCoV were recovered uniquely from the intestinal lumen without homogenization of the tissue. For nine out of 10 samples, NGS produced viral RNA reads with good coverage depth over the entire TCoV genomes. This is a much-needed new, simple and cost effective method of isolating TCoV that facilitates downstream NGS of viral RNA and should be considered as an alternative method for isolating other avian enteric coronaviruses in the interest of obtaining full-length genome sequences.


Subject(s)
Coronavirus, Turkey , Poultry Diseases , Animals , Coronavirus, Turkey/genetics , Genome, Viral , High-Throughput Nucleotide Sequencing/veterinary , Intestines , RNA, Viral/genetics , Turkeys
3.
Front Microbiol ; 12: 678563, 2021.
Article in English | MEDLINE | ID: mdl-34177862

ABSTRACT

The avibirnavirus infectious bursal disease virus (IBDV) is responsible for a highly contagious and sometimes lethal disease of chickens (Gallus gallus). IBDV genetic variation is well-described for both field and live-attenuated vaccine strains, however, the dynamics and selection pressures behind this genetic evolution remain poorly documented. Here, genetically homogeneous virus stocks were generated using reverse genetics for a very virulent strain, rvv, and a vaccine-related strain, rCu-1. These viruses were serially passaged at controlled multiplicities of infection in several biological systems, including primary chickens B cells, the main cell type targeted by IBDV in vivo. Passages were also performed in the absence or presence of a strong selective pressure using the antiviral nucleoside analog 7-deaza-2'-C-methyladenosine (7DMA). Next Generation Sequencing (NGS) of viral genomes after the last passage in each biological system revealed that (i) a higher viral diversity was generated in segment A than in segment B, regardless 7DMA treatment and viral strain, (ii) diversity in segment B was increased by 7DMA treatment in both viruses, (iii) passaging of IBDV in primary chicken B cells, regardless of 7DMA treatment, did not select cell-culture adapted variants of rvv, preserving its capsid protein (VP2) properties, (iv) mutations in coding and non-coding regions of rCu-1 segment A could potentially associate to higher viral fitness, and (v) a specific selection, upon 7DMA addition, of a Thr329Ala substitution occurred in the viral polymerase VP1. The latter change, together with Ala270Thr change in VP2, proved to be associated with viral attenuation in vivo. These results identify genome sequences that are important for IBDV evolution in response to selection pressures. Such information will help tailor better strategies for controlling IBDV infection in chickens.

SELECTION OF CITATIONS
SEARCH DETAIL
...