Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 205
Filter
1.
Cancers (Basel) ; 16(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38893245

ABSTRACT

Tumors that spontaneously shrink from unknown causes in tumor regression, and that return to normal cells in tumor reversion, are phenomena with the potential to contribute new knowledge and novel therapies for cancer patient survival. Tumorigenesis is associated with dysregulated phosphate metabolism and an increased transport of phosphate into tumor cells, potentially mediated by phosphate overload from excessive dietary phosphate intake, a significant problem in Western societies. This paper proposes that reduced dietary phosphate overload and reregulated phosphate metabolism may reverse an imbalance of kinases and phosphatases in cell signaling and cellular proliferation, thereby activating autophagy in tumor regression and reversion. Dietary phosphate can also be reduced by sickness-associated anorexia, fasting-mimicking diets, and other diets low in phosphate, all of which have been associated with tumor regression. Tumor reversion has also been demonstrated by transplanting cancer cells into a healthy microenvironment, plausibly associated with normal cellular phosphate concentrations. Evidence also suggests that the sequestration and containment of excessive phosphate within encapsulated tumors is protective in cancer patients, preventing the release of potentially lethal amounts of phosphate into the general circulation. Reducing dietary phosphate overload has the potential to provide a novel, safe, and effective reversion therapy for cancer patients, and further research is warranted.

2.
bioRxiv ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38645182

ABSTRACT

Local immune processes within aging tissues are a significant driver of aging associated dysfunction, but tissue-autonomous pathways and cell types that modulate these responses remain poorly characterized. The cytosolic DNA sensing pathway, acting through cyclic GMP-AMP synthase (cGAS) and Stimulator of Interferon Genes (STING), is broadly expressed in tissues, and is poised to regulate local type I interferon (IFN-I)-dependent and independent inflammatory processes within tissues. Recent studies suggest that the cGAS/STING pathway may drive pathology in various in vitro and in vivo models of accelerated aging. To date, however, the role of the cGAS/STING pathway in physiological aging processes, in the absence of genetic drivers, has remained unexplored. This remains a relevant gap, as STING is ubiquitously expressed, implicated in multitudinous disorders, and loss of function polymorphisms of STING are highly prevalent in the human population (>50%). Here we reveal that, during physiological aging, STING-deficiency leads to a significant shortening of murine lifespan, increased pro-inflammatory serum cytokines and tissue infiltrates, as well as salient changes in histological composition and organization. We note that aging hearts, livers, and kidneys express distinct subsets of inflammatory, interferon-stimulated gene (ISG), and senescence genes, collectively comprising an immune fingerprint for each tissue. These distinctive patterns are largely imprinted by tissue-specific stromal and myeloid cells. Using cellular interaction network analyses, immunofluorescence, and histopathology data, we show that these immune fingerprints shape the tissue architecture and the landscape of cell-cell interactions in aging tissues. These age-associated immune fingerprints are grossly dysregulated with STING-deficiency, with key genes that define aging STING-sufficient tissues greatly diminished in the absence of STING. Changes in immune signatures are concomitant with a restructuring of the stromal and myeloid fractions, whereby cell:cell interactions are grossly altered and resulting in disorganization of tissue architecture in STING-deficient organs. This altered homeostasis in aging STING-deficient tissues is associated with a cross-tissue loss of homeostatic tissue-resident macrophage (TRM) populations in these tissues. Ex vivo analyses reveal that basal STING-signaling limits the susceptibility of TRMs to death-inducing stimuli and determines their in situ localization in tissue niches, thereby promoting tissue homeostasis. Collectively, these data upend the paradigm that cGAS/STING signaling is primarily pathological in aging and instead indicate that basal STING signaling sustains tissue function and supports organismal longevity. Critically, our study urges caution in the indiscriminate targeting of these pathways, which may result in unpredictable and pathological consequences for health during aging.

3.
Pest Manag Sci ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38334233

ABSTRACT

BACKGROUND: There are various methods to control weeds, that represent considerable challenges for farmers around the globe, although applying small molecular compounds is still the most effective and versatile technology to date. In the search for novel chemical entities with new modes-of-action that can control weeds displaying resistance, we have investigated two spirocyclic classes of acyl-ACP thioesterase inhibitors based on X-ray co-crystal structures and subsequent modelling studies. RESULTS: By exploiting scaffold-hopping and isostere concepts, we were able to identify new spirolactam-based lead structures showing promising activity in vivo against commercially important grass weeds in line with strong target affinity. CONCLUSION: The present work covers a series of novel herbicidal lead structures that contain a spirocyclic lactam as a structural key feature carrying ortho-substituted benzyl or heteroarylmethylene side chains. These new compounds show good acyl-ACP thioesterase inhibition in line with strong herbicidal activity. Glasshouse trials showed that the spirolactams outlined herein display promising control of grass-weed species in pre-emergence application combined with dose-response windows that enable partial selectivity in wheat and corn. Remarkably, some of the novel acyl-ACP thioesterase-inhibitors showed efficacy against resistant grass weeds such as Alopecurus myosuroides and Lolium spp. on competitive levels compared with commercial standards. © 2024 Society of Chemical Industry.

4.
Epidemiologia (Basel) ; 5(1): 29-40, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38390916

ABSTRACT

Theories of myopia etiology based on near work and lack of outdoor exposure have had inconsistent support and have not prevented the rising prevalence of global myopia. New scientific theories in the cause and prevention of myopia are needed. Myopia prevalence is low in native people consuming traditional diets lacking in sodium chloride, and nutritional epidemiological evidence supports the association of rising myopia prevalence with dietary sodium intake. East Asian populations have among the highest rates of myopia associated with high dietary sodium. Similar associations of sodium and rising myopia prevalence were observed in the United States in the late 20th century. The present perspective synthesizes nutritional epidemiology evidence with pathophysiological concepts and proposes that axial myopia occurs from increased fluid retention in the vitreous of the eye, induced by dietary sodium chloride intake. Salt disturbs ionic permeability of retinal membranes, increases the osmotic gradient flow of fluid into the vitreous, and stretches ocular tissue during axial elongation. Based on the present nutritional epidemiology evidence, experimental research should investigate the effect of sodium chloride as the cause of myopia, and clinical research should test a very low-salt diet in myopia correction and prevention.

5.
Medicines (Basel) ; 11(2)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38392693

ABSTRACT

Background: Cancer therapeutics have a low success rate in clinical trials. An interdisciplinary approach is needed to translate basic, clinical, and remote fields of research knowledge into novel cancer treatments. Recent research has identified high dietary phosphate intake as a risk factor associated with cancer incidence. A model of tumor dynamics predicted that reducing phosphate levels sequestered in the tumor microenvironment could substantially reduce tumor size. Coincidently, a low-phosphate diet is already in use to help patients with chronic kidney disease manage high serum phosphate levels. Methods: A grounded-theory literature-review method was used to synthesize interdisciplinary findings from the basic and clinical sciences, including oncology, nephrology, nutritional epidemiology, and dietetic research on cancer. Results: Findings of tumor remission associated with fasting and a ketogenic diet, which lower intake of dietary phosphate, support the hypothesis that a low-phosphate diet will reduce levels of phosphate sequestered in the tumor microenvironment and reduce tumor size. Additionally, long-term effects of a low-phosphate diet may reverse dysregulated phosphate metabolism associated with tumorigenesis and prevent cancer recurrence. Conclusions: Evidence in this article provides the rationale to test a low-phosphate diet as a dietary intervention to reduce tumor size and lower risk of cancer recurrence.

6.
J Appl Toxicol ; 44(1): 17-27, 2024 01.
Article in English | MEDLINE | ID: mdl-37332052

ABSTRACT

Alcohol consumption is associated with an increased risk of breast cancer, even at low alcohol intake levels, but public awareness of the breast cancer risk associated with alcohol intake is low. Furthermore, the causative mechanisms underlying alcohol's association with breast cancer are unknown. The present theoretical paper uses a modified grounded theory method to review the research literature and propose that alcohol's association with breast cancer is mediated by phosphate toxicity, the accumulation of excess inorganic phosphate in body tissue. Serum levels of inorganic phosphate are regulated through a network of hormones released from the bone, kidneys, parathyroid glands, and intestines. Alcohol burdens renal function, which may disturb the regulation of inorganic phosphate, impair phosphate excretion, and increase phosphate toxicity. In addition to causing cellular dehydration, alcohol is an etiologic factor in nontraumatic rhabdomyolysis, which ruptures cell membranes and releases inorganic phosphate into the serum, leading to hyperphosphatemia. Phosphate toxicity is also associated with tumorigenesis, as high levels of inorganic phosphate within the tumor microenvironment activate cell signaling pathways and promote cancer cell growth. Furthermore, phosphate toxicity potentially links cancer and kidney disease in onco-nephrology. Insights into the mediating role of phosphate toxicity may lead to future research and interventions that raise public health awareness of breast cancer risk and alcohol consumption.


Subject(s)
Breast Neoplasms , Hyperphosphatemia , Humans , Female , Breast Neoplasms/chemically induced , Breast Neoplasms/metabolism , Hyperphosphatemia/complications , Hyperphosphatemia/metabolism , Phosphates/toxicity , Phosphates/metabolism , Kidney/metabolism , Ethanol/toxicity , Tumor Microenvironment
7.
Cancers (Basel) ; 15(20)2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37894460

ABSTRACT

Breast cancer is associated with phosphate toxicity, the toxic effect from dysregulated phosphate metabolism that can stimulate tumorigenesis. Phosphate toxicity and dysregulated phosphate metabolism are also associated with bone mineral abnormalities, including excessive bone mineral loss and deposition. Based on shared associations with dysregulated phosphate metabolism and phosphate toxicity, a hypothesis proposed in the present mixed methods-grounded theory study posits that middle-aged women with incidence of breast cancer had a greater magnitude of changes in bone mineral density over time compared with women who remained cancer-free. To test this hypothesis, a mixed-effects model was used to analyze the associations of breast cancer incidence with spinal bone mineral density changes in the U.S. Study of Women's Health Across the Nation. Compared with women in the cohort who remained cancer-free, women who self-reported breast cancer had higher bone mineral density at baseline, but had more rapid losses in bone mineral density during follow-up visits. These findings agree with the hypothesis that a greater magnitude of changes in bone mineral density over time is associated with breast cancer in a cohort of middle-aged women. The findings also have implications for studies investigating dysregulated phosphate metabolism and phosphate toxicity as causative factors of bone metastasis in metastatic breast cancer. Additionally, the authors previously found increased breast cancer risk associated with high dietary phosphate intake in the same cohort of middle-aged women, and more studies should investigate a low-phosphorus diet to reduce bone mineral abnormalities and tumorigenesis in breast cancer patients.

8.
Nutrients ; 15(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37686766

ABSTRACT

Research has shown that high amounts of dietary phosphorus that are twice the amount of the U.S. dietary reference intake of 700 mg for adults are associated with all-cause mortality, phosphate toxicity, and tumorigenesis. The present nested case-control study measured the relative risk of self-reported breast cancer associated with dietary phosphate intake over 10 annual visits in a cohort of middle-aged U.S. women from the Study of Women's Health Across the Nation. Analyzing data from food frequency questionnaires, the highest level of daily dietary phosphorus intake, >1800 mg of phosphorus, was approximately equivalent to the dietary phosphorus levels in menus promoted by the United States Department of Agriculture. After adjusting for participants' energy intake, this level of dietary phosphorus was associated with a 2.3-fold increased risk of breast cancer incidence compared to the reference dietary phosphorus level of 800 to 1000 mg, which is based on recommendations from the U.S. National Kidney Foundation, (RR: 2.30, 95% CI: 0.94-5.61, p = 0.07). Despite the lack of statistical significance, likely due to the small sample size of the cohort, the present nested case-control study's clinically significant effect size, dose-response, temporality, specificity, biological plausibility, consistency, coherence, and analogy with other research findings meet the criteria for inferred causality in observational studies, warranting further investigations. Furthermore, these findings suggest that a low-phosphate diet should be tested on patients with breast cancer.


Subject(s)
Breast Neoplasms , Phosphorus, Dietary , Female , Humans , Middle Aged , Breast Neoplasms/epidemiology , Breast Neoplasms/etiology , Case-Control Studies , Phosphates , Phosphorus, Dietary/adverse effects , Risk , United States/epidemiology
9.
J Natl Med Assoc ; 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37537032

ABSTRACT

Burning Mouth syndrome (BMS) is a relatively common oral neurosensory disorder known for oral burning pain. In that there is a relative absence of oral clinical findings and systemic causation, the diagnosis of BMS is challenging. Sialadenitis of the anterior mandibular vestibule appears to be a subset of BMS. The lip component of chronic orofacial pain is potentially an important concern with regard to the diagnosis and treatment of chronic orofacial pain. Discussion regarding the etiology, diagnosis, and therapy of this condition is provided.

10.
Cureus ; 15(7): e42195, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37602080

ABSTRACT

Oral nodular chronic hyperplastic candidiasis (CHC) is a rare subset of oral CHC, a relatively uncommon condition associated with immunosuppression. We present a case of a 73-year-old female with nodular CHC of the tongue and a medical history noted for type 2 diabetes. Additionally, we discuss the diagnosis, management, and conditions potentially associated with oral nodular CHC.

11.
Clin Med Insights Cardiol ; 17: 11795468231158206, 2023.
Article in English | MEDLINE | ID: mdl-37434790

ABSTRACT

Preventing hypertension by restricting dietary salt intake, sodium chloride, is well established in public health policy, but a pathophysiological mechanism has yet to explain the controversial clinical finding that some individuals have a greater risk of hypertension from exposure to salt intake, termed salt-sensitive hypertension. The present perspective paper synthesizes interdisciplinary findings from the research literature and offers novel insights proposing that the pathogenesis of salt-sensitive hypertension is mediated by interaction of salt-induced hypervolemia and phosphate-induced vascular calcification. Arterial stiffness and blood pressure increase as calcification in the vascular media layer reduces arterial elasticity, preventing arteries from expanding to accommodate extracellular fluid overload in hypervolemia related to salt intake. Furthermore, phosphate has been found to be a direct inducer of vascular calcification. Reduction of dietary phosphate may help reduce salt-sensitive hypertension by lowering the prevalence and progression of vascular calcification. Further research should investigate the correlation of vascular calcification with salt-sensitive hypertension, and public health recommendations to prevent hypertension should encourage reductions of both sodium-induced hypervolemia and phosphate-induced vascular calcification.

12.
Hand Clin ; 39(3): 417-425, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37453768

ABSTRACT

Tendinopathies are some of the most common diagnoses treated by hand surgeons. Diagnoses such as trigger digit, de Quervain tenosynovitis, extensor carpi ulnaris tendinitis, and epicondylitis often resolve with nonoperative treatment and/or a single ambulatory procedure. When symptoms persist or worsen after surgery, patients are disappointed and treatment can be challenging. This article reviews practical points in evaluation of such cases, and surgical options that work in revision scenarios.


Subject(s)
Tendinopathy , Trigger Finger Disorder , Humans , Tendinopathy/diagnosis , Tendinopathy/surgery , Forearm/surgery , Muscle, Skeletal
13.
Anal Chem ; 95(29): 11028-11036, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37428180

ABSTRACT

With the introduction of ultrahigh efficiency columns and fast separations, the need to eliminate peak deformation contributed by the instrument must be effectively solved. Herein, we develop a robust framework to automate deconvolution and minimize its artifacts, such as negative dips, wild noise oscillations, and ringing, by combining regularized deconvolution and Perona-Malik (PM) anisotropic diffusion methods. A asymmetric generalized normal (AGN) function is proposed to model the instrumental response for the first time. With no-column data at various flow rates, the interior point optimization algorithm extracts the parameters describing instrumental distortion. The column-only chromatogram was reconstructed using the Tikhonov regularization technique with minimal instrumental distortion. For illustration, four different chromatography systems are used in fast chiral and achiral separations with 2.1 and 4.6 mm i.d. columns. Ordinary HPLC data can approach highly optimized UHPLC data. Similarly, in fast HPLC-circular dichroism (CD) detection, 8000 plates were gained for a fast chiral separation. Moment analysis of deconvolved peaks confirms correction of the center of mass, variance, skew, and kurtosis. This approach can be easily integrated and used with virtually any separation and detection system to provide enhanced analytical data.

14.
Expert Rev Mol Med ; 25: e20, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37309057

ABSTRACT

Studies of autism spectrum disorder (ASD) related to exposure to toxic levels of dietary phosphate are lacking. Phosphate toxicity from dysregulated phosphate metabolism can negatively impact almost every major organ system of the body, including the central nervous system. The present paper used a grounded theory-literature review method to synthesise associations of dysregulated phosphate metabolism with the aetiology of ASD. Cell signalling in autism has been linked to an altered balance between phosphoinositide kinases, which phosphorylate proteins, and the counteracting effect of phosphatases in neuronal membranes. Glial cell overgrowth in the developing ASD brain can lead to disturbances in neuro-circuitry, neuroinflammation and immune responses which are potentially related to excessive inorganic phosphate. The rise in ASD prevalence has been suggested to originate in changes to the gut microbiome from increasing consumption of additives in processed food, including phosphate additives. Ketogenic diets and dietary patterns that eliminate casein also reduce phosphate intake, which may account for many of the suggested benefits of these diets in children with ASD. Dysregulated phosphate metabolism is causatively linked to comorbid conditions associated with ASD such as cancer, tuberous sclerosis, mitochondrial dysfunction, diabetes, epilepsy, obesity, chronic kidney disease, tauopathy, cardiovascular disease and bone mineral disorders. Associations and proposals presented in this paper offer novel insights and directions for future research linking the aetiology of ASD with dysregulated phosphate metabolism and phosphate toxicity from excessive dietary phosphorus intake.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Bone Diseases , Child , Humans , Central Nervous System , Nutritional Status , Signal Transduction
15.
FASEB J ; 37(7): e23030, 2023 07.
Article in English | MEDLINE | ID: mdl-37302010

ABSTRACT

Almost half of the people who die from sudden cardiac arrest have no detectable heart disease. Among children and young adults, the cause of approximately one-third of deaths from sudden cardiac arrest remains unexplained after thorough examination. Sudden cardiac arrest and related sudden cardiac death are attributed to dysfunctional cardiac ion-channels. The present perspective paper proposes a pathophysiological mechanism by which phosphate toxicity from cellular accumulation of dysregulated inorganic phosphate interferes with normal calcium handling in the heart, leading to sudden cardiac arrest. During cardiac muscle relaxation following contraction, SERCA2a pumps actively transport calcium ions into the sarcoplasmic reticulum, powered by ATP hydrolysis that produces ADP and inorganic phosphate end products. Reviewed evidence supports the proposal that end-product inhibition of SERCA2a occurs as increasing levels of inorganic phosphate drive up phosphate toxicity and bring cardiac function to a sudden and unexpected halt. The paper concludes that end-product inhibition from ATP hydrolysis is the mediating factor in the association of sudden cardiac arrest with phosphate toxicity. However, current technology lacks the ability to directly measure this pathophysiological mechanism in active myocardium, and further research is needed to confirm phosphate toxicity as a risk factor in individuals with sudden cardiac arrest. Moreover, phosphate toxicity may be reduced through modification of dietary phosphate intake, with potential for employing low-phosphate dietary interventions to reduce the risk of sudden cardiac arrest.


Subject(s)
Calcium , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Child , Humans , Calcium/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Myocardial Contraction/physiology , Myocardium/metabolism , Death, Sudden, Cardiac/etiology , Adenosine Triphosphate
16.
Disaster Med Public Health Prep ; 17: e313, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36503702

ABSTRACT

This paper investigates three controversies involving potential causes and consequences of information bias in case and death definitions during the coronavirus disease (COVID-19) pandemic. First, evidence suggests China's surveillance data were biased and misinterpreted by the World Health Organization (WHO), prompting the WHO to advise nations to copy China's lockdowns. China appeared to use narrow diagnostic definitions that undercounted cases and deaths. Second, novel genomic data disseminated during the pandemic without adequate guidance from rigorous epidemiologic studies biased infection control policies in many countries. A novel genomic sequence of a virus is insufficient to declare new cases of a novel disease. Third, media reports of COVID-19 surveillance data in many nations appeared to be biased. Broadened surveillance definitions captured additional information, but unadjusted surveillance data disseminated to the public are not true cases and deaths. Recommendations include clarification of the proper use of diagnostic and surveillance case and death definitions to avoid information bias.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , COVID-19/epidemiology , Communicable Disease Control , SARS-CoV-2 , Pandemics , Bias
17.
Med Sci (Basel) ; 10(4)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36548005

ABSTRACT

There was an error in the original publication [...].

18.
Metabolites ; 12(12)2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36557322

ABSTRACT

The present perspective article proposes that cachexia, muscle wasting in cancer, is mediated by dysregulated phosphate metabolism and phosphate toxicity that can damage tissues in most major organ systems. A diet high in phosphorus fed to mice deficient in klotho, a cofactor that regulates phosphate metabolism, accelerates aging, sarcopenia, general organ atrophy, kyphosis, and osteoporosis. Similar effects are seen in phenotypes of mutant p53 mice that overexpress the p53 tumor suppressor gene. Although mutant p53 mice do not develop tumors compared to wild-type mice, mutant p53 mice have shorter mean lifespans. Furthermore, tumorigenesis is associated with the sequestration of excessive inorganic phosphate, and dangerous levels of phosphate are released into circulation during tumor lysis syndrome. In total, this evidence implies that tumorigenesis may be a compensatory mechanism that provides protective effects against systemic exposure to dysregulated phosphate metabolism and phosphate toxicity related to cachexia in cancer. Moreover, the hypothetical protection against phosphate toxicity afforded by tumorigenesis also provides an alternate explanation for putative tumor evasion of the immune system. Insights proposed in this perspective paper provide new directions for further research, with potential to develop novel interventions and clinical applications that modify dietary phosphate intake to reduce cachexia in cancer patients.

19.
Diseases ; 10(4)2022 Oct 16.
Article in English | MEDLINE | ID: mdl-36278588

ABSTRACT

This perspective paper used a grounded theory method to synthesize evidence proposing that sodium toxicity from excessive dietary salt intake is a potential common pathophysiological mechanism that mediates the association of hypertension, obstructive sleep apnea, and anxiety with cardiovascular disease and COVID-19. Increased anxiety in these conditions may be linked to a high-salt diet through stimulation of the sympathetic nervous system, which increases blood pressure while releasing catecholamines, causing a "fight or flight" response. A rostral shift of fluid overload from the lower to the upper body occurs in obstructive sleep apnea associated with COVID-19 and cardiovascular disease, and may be related to sodium and fluid retention triggered by hypertonic dehydration. Chronic activation of the renin-angiotensin-aldosterone system responds to salt-induced dehydration by increasing reabsorption of sodium and fluid, potentially exacerbating fluid overload. Anxiety may also be related to angiotensin II that stimulates the sympathetic nervous system to release catecholamines. More research is needed to investigate these proposed interrelated mechanisms mediated by dietary salt. Furthermore, dietary interventions should use a whole-food plant-based diet that eliminates foods processed with salt to test the effect of very low sodium intake levels on hypertension, anxiety, and obstructive sleep apnea in cardiovascular disease and COVID-19.

20.
Article in English | MEDLINE | ID: mdl-36153302

ABSTRACT

OBJECTIVE: To assess the quality of clinical practice guidelines (CPGs) for the use of antimicrobial prophylaxis to prevent infective endocarditis in indicated dental procedures. STUDY DESIGN: We searched on Medline/OVID, CINAHL/EBSCO, and EMBASE from January 2011 to January 2022. We included de novo guidelines and excluded adapted or adopted guidelines, and guidelines published before 2011. The guidelines were independently appraised by 4 reviewers using the Appraisal of Guidelines for Research & Evaluation II (AGREE II) Instrument. RESULTS: Four eligible CPGs were appraised: the European Society of Cardiology, the American Heart Association, the National Institute of Health and Care Excellence (NICE), and the Japanese Circulation Society (JCS). Their AGREE II first overall assessments (OA1) were 63%, 58%, 92%, and 71%, respectively. Both NICE and JCS scored the highest in OA1 (>70%), Domain 3 Rigor of Development (85%, 65%), and Domain 5 Applicability (76%, 48%), respectively. The second overall assessment (OA2) of using the CPGs in daily practice was not significantly variable (recommended for use with modifications). CONCLUSION: Three out of 4 CPGs support that the benefits of prevention of infective endocarditis outweigh the risks of antibiotic resistance.


Subject(s)
Endocarditis, Bacterial , Endocarditis , Humans , Antibiotic Prophylaxis , Endocarditis, Bacterial/prevention & control , Endocarditis/prevention & control , Endocarditis/drug therapy , Anti-Bacterial Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...