Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Pollut ; 158(6): 2117-23, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20338676

ABSTRACT

1H NMR metabolomics was used to monitor earthworm responses to sub-lethal (50-1500 mg/kg) phenanthrene exposure in soil. Total phenanthrene was analyzed via soxhlet extraction, bioavailable phenanthrene was estimated by hydroxypropyl-beta-cyclodextrin (HPCD) and 1-butanol extractions and sorption to soil was assessed by batch equilibration. Bioavailable phenanthrene (HPCD-extracted) comprised approximately 65-97% of total phenanthrene added to the soil. Principal component analysis (PCA) showed differences in responses between exposed earthworms and controls after 48 h exposure. The metabolites that varied with exposure included amino acids (isoleucine, alanine and glutamine) and maltose. PLS models indicated that earthworm response is positively correlated to both total phenanthrene concentration and bioavailable (HPCD-extracted) phenanthrene in a freshly spiked, unaged soil. These results show that metabolomics is a powerful, direct technique that may be used to monitor contaminant bioavailability and toxicity of sub-lethal concentrations of contaminants in the environment. These initial findings warrant further metabolomic studies with aged contaminated soils.


Subject(s)
Environmental Monitoring/methods , Metabolomics/methods , Oligochaeta/drug effects , Phenanthrenes/toxicity , Soil Pollutants/toxicity , Animals , Dose-Response Relationship, Drug , Magnetic Resonance Spectroscopy , Oligochaeta/metabolism , Phenanthrenes/analysis , Principal Component Analysis , Soil Pollutants/analysis
2.
Environ Toxicol Chem ; 27(4): 828-36, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18333692

ABSTRACT

The earthworm Eisenia fetida is frequently used in ecotoxicological studies; however, it has not yet been investigated using proton nuclear magnetic resonance ((1)H NMR) metabolic profiling methods. The present study investigates the impact of depuration time, sample homogenization, and different extraction solvents on the quality and reproducibility of the (1)H NMR spectra of E. fetida with the goal of determining whether this species is suitable for future metabonomic studies. A depuration time of 96 h, followed by intact lyophilization before homogenization and extraction into a deuterium oxide (D(2)O)-based phosphate buffer, was found to produce extracts with excellent (1)H NMR reproducibility. The D(2)O buffer extracted the largest quantity of the widest variety of earthworm metabolites, which is consistent with the results from other studies using different earthworm species. Nuclear magnetic resonance assignments of the major metabolites in the D(2)O-based buffer also were performed and found to be similar to those for other earthworm species, such as Eisenia veneta, but also to have characteristic attributes in E. fetida. The major metabolites identified include amino acids (alanine, arginine, glutamic acid, glutamine, glycine, leucine, lysine, phenylalanine, serine, tyrosine, and valine), two sugars (glucose and maltose), the sugar alcohol mannitol, and the polyalcohol inositol. Two other earthworm species (Lumbricus rubellus and Lumbricus terrestris) also were examined using protocols developed for E. fetida, and of the three species, the (1)H NMR spectra of E. fetida had the least variation, indicating this species is well-suited for future metabolomic-based ecotoxicity studies.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Oligochaeta/metabolism , Animals
SELECTION OF CITATIONS
SEARCH DETAIL