Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Proc Math Phys Eng Sci ; 477(2254): 20210295, 2021 Oct.
Article in English | MEDLINE | ID: mdl-35153586

ABSTRACT

Linear angular momentum multiplexing (LAMM) has recently been proposed for high spectral-efficiency communications between moving platforms, such as between trains and ground infrastructure. We present performance results obtained from a scale experimental system comprising a 2 × 2 antenna system operating at 2.35 GHz. The link transmitted two independent video streams, using RF pre-coding and software-defined radios to modulate and up/down-convert the signals. Linear motion is introduced to demonstrate the translation-invariance of the technique. We interpret the measured data with the aid of an analytical model to show that crosstalk between the two channels is at levels low enough to consistently support the video streams without interruption. Specifically, our results show spectral efficiency is consistently higher when LAMM coding is enabled compared with an uncoded channel.

2.
Proc Math Phys Eng Sci ; 476(2242): 20200209, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33214758

ABSTRACT

Linear angular momentum multiplexing is a new method for providing highly spectrally efficient short-range communication between a transmitter and receiver, where one may move at speed transverse to the propagation. Such applications include rail, vehicle and hyperloop transport systems communicating with fixed infrastructure on the ground. This paper describes how the scientific concept of linear angular momentum multiplexing evolves from orbital angular momentum multiplexing. The essential parameters for implementing this concept are a long array at least at one of the ends of the link; antenna element radiation characteristics and the array element spacing relative to the propagation distance. These parameters are also backed by short-range measurements carried out at 2.4 GHz used to model the Rice fading channel and determine resilience to multipath fading.

3.
Sensors (Basel) ; 19(14)2019 Jul 17.
Article in English | MEDLINE | ID: mdl-31319623

ABSTRACT

Radio frequency interference places a major limitation on the in-situ use of unshielded nuclear quadrupole or nuclear magnetic resonance methods in industrial environments for quality control and assurance applications. In this work, we take the detection of contraband in an airport security-type application that is subject to burst mode radio frequency interference as a test case. We show that a machine learning decision tree model is ideally suited to the automated identification of interference bursts, and can be used in support of automated interference suppression algorithms. The usefulness of the data processed additionally by the new algorithm compared to traditional processing is shown in a receiver operating characteristic (ROC) analysis of a validation trial designed to mimic a security contraband detection application. The results show a highly significant increase in the area under the ROC curve from 0.580 to 0.906 for the proper identification of recovered data distorted by interfering bursts.

4.
J Environ Public Health ; 2015: 198272, 2015.
Article in English | MEDLINE | ID: mdl-26229540

ABSTRACT

The presented survey was conducted in six European countries as an online study. A total of 2454 subjects participated. Two main research questions were investigated: firstly, how does the cognitive, moral, and affective framing of radio frequency electromagnetic field (RF EMF) exposure perception influence RF EMF risk perception? Secondly, can the deployment of mobile phone base stations have greater acceptance with RF EMF exposure reduction? The findings with respect to the first question clearly indicated that the cognitive framed exposure perception is the main determinant of RF EMF risk perception. The concomitant sensitivity to exposure strength offers an opportunity to improve the acceptance of base stations by exposure reduction. A linear regression analysis supported this assumption: in a fictional test situation, exposure reduction improved the acceptance of base stations, operationalized as the requested distance of the base station from one's own home. Furthermore, subjects with high RF EMF risk perception were most sensitive to exposure reduction. On average, a 70% exposure reduction reduced the requested distance from about 2000 meters to 1000 meters. The consequences for risk communication are discussed.


Subject(s)
Electromagnetic Fields , Health Knowledge, Attitudes, Practice , Perception , Radiation Exposure , Radio Waves , Adult , Cell Phone , Europe , Female , Humans , Male , Middle Aged , Risk
SELECTION OF CITATIONS
SEARCH DETAIL