Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(24)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38139430

ABSTRACT

Type 10 17ß-hydroxysteroid dehydrogenase (17ß-HSD10) is the HSD17B10 gene product playing an appreciable role in cognitive functions. It is the main hub of exercise-upregulated mitochondrial proteins and is involved in a variety of metabolic pathways including neurosteroid metabolism to regulate allopregnanolone homeostasis. Deacetylation of 17ß-HSD10 by sirtuins helps regulate its catalytic activities. 17ß-HSD10 may also play a critical role in the control of mitochondrial structure, morphology and dynamics by acting as a member of the Parkin/PINK1 pathway, and by binding to cyclophilin D to open mitochondrial permeability pore. 17ß-HSD10 also serves as a component of RNase P necessary for mitochondrial tRNA maturation. This dehydrogenase can bind with the Aß peptide thereby enhancing neurotoxicity to brain cells. Even in the absence of Aß, its quantitative and qualitative variations can result in neurodegeneration. Since elevated levels of 17ß-HSD10 were found in brain cells of Alzheimer's disease (AD) patients and mouse AD models, it is considered to be a key factor in AD pathogenesis. Since data underlying Aß-binding-alcohol dehydrogenase (ABAD) were not secured from reported experiments, ABAD appears to be a fabricated alternative term for the HSD17B10 gene product. Results of this study would encourage researchers to solve the question why elevated levels of 17ß-HSD10 are present in brains of AD patients and mouse AD models. Searching specific inhibitors of 17ß-HSD10 may find candidates to reduce senile neurodegeneration and open new approaches for the treatment of AD.


Subject(s)
17-Hydroxysteroid Dehydrogenases , Alzheimer Disease , Animals , Humans , Mice , 17-Hydroxysteroid Dehydrogenases/genetics , 17-Hydroxysteroid Dehydrogenases/metabolism , Alcohol Dehydrogenase/metabolism , Alzheimer Disease/metabolism , Brain/metabolism
2.
Int J Mol Sci ; 24(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37239833

ABSTRACT

Type 10 17ß-hydroxysteroid dehydrogenase (17ß-HSD10), a homo-tetrameric multifunctional protein with 1044 residues encoded by the HSD17B10 gene, is necessary for brain cognitive function. Missense mutations result in infantile neurodegeneration, an inborn error in isoleucine metabolism. A 5-methylcytosine hotspot underlying a 388-T transition leads to the HSD10 (p.R130C) mutant to be responsible for approximately half of all cases suffering with this mitochondrial disease. Fewer females suffer with this disease due to X-inactivation. The binding capability of this dehydrogenase to Aß-peptide may play a role in Alzheimer's disease, but it appears unrelated to infantile neurodegeneration. Research on this enzyme was complicated by reports of a purported Aß-peptide-binding alcohol dehydrogenase (ABAD), formerly referred to as endoplasmic-reticulum-associated Aß-binding protein (ERAB). Reports concerning both ABAD and ERAB in the literature reflect features inconsistent with the known functions of 17ß-HSD10. It is clarified here that ERAB is reportedly a longer subunit of 17ß-HSD10 (262 residues). 17ß-HSD10 exhibits L-3-hydroxyacyl-CoA dehydrogenase activity and is thus also referred to in the literature as short-chain 3-hydorxyacyl-CoA dehydrogenase or type II 3-hydorxyacyl-CoA dehydrogenase. However, 17ß-HSD10 is not involved in ketone body metabolism, as reported in the literature for ABAD. Reports in the literature referring to ABAD (i.e., 17ß-HSD10) as a generalized alcohol dehydrogenase, relying on data underlying ABAD's activities, were found to be unreproducible. Furthermore, the rediscovery of ABAD/ERAB's mitochondrial localization did not cite any published research on 17ß-HSD10. Clarification of the purported ABAD/ERAB function derived from these reports on ABAD/ERAB may invigorate this research field and encourage new approaches to the understanding and treatment of HSD17B10-gene-related disorders. We establish here that infantile neurodegeneration is caused by mutants of 17ß-HSD10 but not ABAD, and so we conclude that ABAD represents a misnomer employed in high-impact journals.


Subject(s)
3-Hydroxyacyl CoA Dehydrogenases , Alcohol Dehydrogenase , Alzheimer Disease , Humans , Alcohol Dehydrogenase/genetics , Alzheimer Disease/genetics , Mutation, Missense
3.
Brain Sci ; 10(10)2020 Sep 30.
Article in English | MEDLINE | ID: mdl-33008014

ABSTRACT

Fragile X syndrome (FXS) is caused by silencing of the FMR1 gene, which encodes a protein with a critical role in synaptic plasticity. The molecular abnormality underlying FMR1 silencing, CGG repeat expansion, is well characterized; however, delineation of the pathway from DNA to RNA to protein using biosamples from well characterized patients with FXS is limited. Since FXS is a common and prototypical genetic disorder associated with intellectual disability (ID) and autism spectrum disorder (ASD), a comprehensive assessment of the FMR1 DNA-RNA-protein pathway and its correlations with the neurobehavioral phenotype is a priority. We applied nine sensitive and quantitative assays evaluating FMR1 DNA, RNA, and FMRP parameters to a reference set of cell lines representing the range of FMR1 expansions. We then used the most informative of these assays on blood and buccal specimens from cohorts of patients with different FMR1 expansions, with emphasis on those with FXS (N = 42 total, N = 31 with FMRP measurements). The group with FMRP data was also evaluated comprehensively in terms of its neurobehavioral profile, which allowed molecular-neurobehavioral correlations. FMR1 CGG repeat expansions, methylation levels, and FMRP levels, in both cell lines and blood samples, were consistent with findings of previous FMR1 genomic and protein studies. They also demonstrated a high level of agreement between blood and buccal specimens. These assays further corroborated previous reports of the relatively high prevalence of methylation mosaicism (slightly over 50% of the samples). Molecular-neurobehavioral correlations confirmed the inverse relationship between overall severity of the FXS phenotype and decrease in FMRP levels (N = 26 males, mean 4.2 ± 3.3 pg FMRP/ng genomic DNA). Other intriguing findings included a significant relationship between the diagnosis of FXS with ASD and two-fold lower levels of FMRP (mean 2.8 ± 1.3 pg FMRP/ng genomic DNA, p = 0.04), in particular observed in younger age- and IQ-adjusted males (mean age 6.9 ± 0.9 years with mean 3.2 ± 1.2 pg FMRP/ng genomic DNA, 57% with severe ASD), compared to FXS without ASD. Those with severe ID had even lower FMRP levels independent of ASD status in the male-only subset. The results underscore the link between FMR1 expansion, gene methylation, and FMRP deficit. The association between FMRP deficiency and overall severity of the neurobehavioral phenotype invites follow up studies in larger patient cohorts. They would be valuable to confirm and potentially extend our initial findings of the relationship between ASD and other neurobehavioral features and the magnitude of FMRP deficit. Molecular profiling of individuals with FXS may have important implications in research and clinical practice.

4.
Acta Neuropathol Commun ; 2: 141, 2014 Sep 18.
Article in English | MEDLINE | ID: mdl-25231243

ABSTRACT

INTRODUCTION: A total of 38 brain cytoarchitectonic subdivisions, representing subcortical and cortical structures, cerebellum, and brainstem, were examined in 4- to 60-year-old subjects diagnosed with autism and control subjects (a) to detect a global pattern of developmental abnormalities and (b) to establish whether the function of developmentally modified structures matches the behavioral alterations that are diagnostic for autism. The volume of cytoarchitectonic subdivisions, neuronal numerical density, and total number of neurons per region of interest were determined in 14 subjects with autism and 14 age-matched controls by using unbiased stereological methods. RESULTS: The study revealed that significant differences between the group of subjects with autism and control groups are limited to a few brain regions, including the cerebellum and some striatum and amygdala subdivisions. In the group of individuals with autism, the total number and numerical density of Purkinje cells in the cerebellum were reduced by 25% and 24%, respectively. In the amygdala, significant reduction of neuronal density was limited to the lateral nucleus (by 12%). Another sign of the topographic selectivity of developmental alterations in the brain of individuals with autism was an increase in the volumes of the caudate nucleus and nucleus accumbens by 22% and 34%, respectively, and the reduced numerical density of neurons in the nucleus accumbens and putamen by 15% and 13%, respectively. CONCLUSIONS: The observed pattern of developmental alterations in the cerebellum, amygdala and striatum is consistent with the results of magnetic resonance imaging studies and their clinical correlations, and of some morphometric studies that indicate that detected abnormalities may contribute to the social and communication deficits, and repetitive and stereotypical behaviors observed in individuals with autism.


Subject(s)
Amygdala/pathology , Autistic Disorder/pathology , Cerebellum/pathology , Corpus Striatum/pathology , Neurons/pathology , Adolescent , Adult , Cell Count , Child , Child, Preschool , Diagnosis , Female , Humans , Male , Middle Aged , Stereotaxic Techniques , Young Adult
5.
J Neurochem ; 117(2): 209-20, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21250997

ABSTRACT

Mitochondria play important roles in generation of free radicals, ATP formation, and in apoptosis. We studied the levels of mitochondrial electron transport chain (ETC) complexes, that is, complexes I, II, III, IV, and V, in brain tissue samples from the cerebellum and the frontal, parietal, occipital, and temporal cortices of subjects with autism and age-matched control subjects. The subjects were divided into two groups according to their ages: Group A (children, ages 4-10 years) and Group B (adults, ages 14-39 years). In Group A, we observed significantly lower levels of complexes III and V in the cerebellum (p<0.05), of complex I in the frontal cortex (p<0.05), and of complexes II (p<0.01), III (p<0.01), and V (p<0.05) in the temporal cortex of children with autism as compared to age-matched control subjects, while none of the five ETC complexes was affected in the parietal and occipital cortices in subjects with autism. In the cerebellum and temporal cortex, no overlap was observed in the levels of these ETC complexes between subjects with autism and control subjects. In the frontal cortex of Group A, a lower level of ETC complexes was observed in a subset of autism cases, that is, 60% (3/5) for complexes I, II, and V, and 40% (2/5) for complexes III and IV. A striking observation was that the levels of ETC complexes were similar in adult subjects with autism and control subjects (Group B). A significant increase in the levels of lipid hydroperoxides, an oxidative stress marker, was also observed in the cerebellum and temporal cortex in the children with autism. These results suggest that the expression of ETC complexes is decreased in the cerebellum and the frontal and temporal regions of the brain in children with autism, which may lead to abnormal energy metabolism and oxidative stress. The deficits observed in the levels of ETC complexes in children with autism may readjust to normal levels by adulthood.


Subject(s)
Autistic Disorder/pathology , Brain/metabolism , Brain/pathology , Multienzyme Complexes/metabolism , Adolescent , Adult , Age Factors , Case-Control Studies , Child , Child, Preschool , Female , Humans , Lipid Peroxides/metabolism , Male , Postmortem Changes , Reactive Oxygen Species/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...