Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Chemosphere ; 324: 138304, 2023 May.
Article in English | MEDLINE | ID: mdl-36871806

ABSTRACT

1,4-Dioxane is a recalcitrant pollutant in water and is ineffectively removed during conventional water and wastewater treatment processes. In this study, we demonstrate the application of nitrifying sand filters to remove 1,4-dioxane from domestic wastewater without the need for bioaugmentation or biostimulation. The sand columns were able to remove 61 ± 10% of 1,4-dioxane on average (initial concentration: 50 µg/L) from wastewater, outperforming conventional wastewater treatment approaches. Microbial analysis revealed the presence of 1,4-dioxane degrading functional genes (dxmB, phe, mmox, and prmA) to support biodegradation being the dominant degradation pathway. Adding antibiotics (sulfamethoxazole and ciprofloxacin), that temporarily inhibited the nitrification process during the dosing period, showed a minor effect in 1,4-dioxane removal (6-8% decline, p < 0.05), suggesting solid resilience of the 1,4-dioxane-degrading microbial community in the columns. Columns amended with sodium azide significantly (p < 0.05) depressed 1,4-dioxane removal in the early stage of dosing but followed by a gradual increase of the removal over time to >80%, presumably due to a shift in the microbial community toward azide-resistant 1,4-dioxane degrading microbes (e.g., fungi). This study demonstrated for the first time the resilience of the 1,4-dioxane-degrading microorganisms during antibiotic shocks, and the selective enrichment of efficient 1,4-dioxane-degrading microbes after azide poisoning. Our observation could provide insights into designing better 1,4-dioxane remediation strategies in the future.


Subject(s)
Wastewater , Water Pollutants, Chemical , Water , Azides , Dioxanes/metabolism , Anti-Bacterial Agents , Water Pollutants, Chemical/metabolism
2.
Water Res ; 206: 117743, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34717243

ABSTRACT

The presence of pharmaceuticals and personal care products (PPCPs) in the environment is primarily the result of discharge of waste, including from onsite wastewater treatment systems (OWTSs) which are employed by 25% of homes in the United States. However, the occurrence and removal of PPCPs in OWTSs is not well understood, particularly given the large diversity in PPCP compounds as well as in OWTS designs. In this study, we monitored 26 different PPCPs in 13 full-scale nitrogen removing biofilters (NRBs), an innovative/alternative type of OWTS that utilizes an overlying sand layer and an underlying woodchip/sand layer to simultaneously remove nitrogen and other wastewater-derived contaminants. The specific objectives of this study were (i) to measure the occurrence of PPCPs in septic tank effluent (STE) that served as an influent to NRBs, (ii) to quantify PPCP removal in three types of NRB configurations (n = 13), and (iii) to evaluate PPCP removal with depth and environmental conditions in NRBs. Aqueous samples were taken during 42 separate sampling events during 2016 - 2019 and analyzed by liquid chromatography tandem mass spectrometry. Analysis of the STE samples yielded detection of 23 of the 26 PPCPs, with caffeine being the most abundant and frequently detected compound at 52,000 ng/L (range: 190 - 181,000 ng/L), followed by acetaminophen and paraxanthine at 47,500 ng/L (190 - 160,000 ng/L), and 34,300 ng/L (430 - 210,000 ng/L), respectively. Cimetidine, fenofibrate, and warfarin were the only compounds not detected. The average removal of PPCPs by NRBs ranged from 58% to >99% for the various compounds. PPCP removal as a function of depth in the systems showed that 50 to >99% of the observed removal was achieved within the top oxic layer (0 - 46 cm) of the NRBs for 19 analytes. Seven of the compounds had >85% removal by the same depth. These results indicate that NRBs are effective at removing PPCPs and that a large portion of the removal is achieved within the oxic nitrifying layer of the NRBs. Overall, the removal of PPCPs in NRBs was comparable (n = 8) or better (n = 15) than that observed for conventional wastewater treatment plants.


Subject(s)
Cosmetics , Pharmaceutical Preparations , Water Pollutants, Chemical , Water Purification , Environmental Monitoring , Nitrogen , Waste Disposal, Fluid , Wastewater/analysis , Water Pollutants, Chemical/analysis
3.
Sci Total Environ ; 642: 394-407, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-29906730

ABSTRACT

Aerial applications of liquid methoprene are used in salt marshes to control mosquitoes by preventing adult emergence. Despite concern about toxicity to non-target organisms, little is known about environmental concentrations after applications, nor methoprene's persistence in salt marsh environments. Aqueous and sediment samples were collected from two marshes receiving weekly applications. Aqueous samples were collected as early as 30 min after applications and as long as nine days afterwards; sediment samples were taken within hours of application and as long as 19 days post-application. Use of time-of-flight liquid chromatography - mass spectral analysis allowed for ultra-low detection limits (0.5 ng/L) in water samples. The data show loss of nearly all methoprene from 1 m deep marsh ditches within 1 day and presence but not accumulation of methoprene in marsh sediments despite repeated applications. Methoprene concentrations observed in salt-marsh mosquito ditches were below those found to be of toxicological significance in other studies.


Subject(s)
Methoprene/analysis , Water Pollutants, Chemical/analysis , Wetlands , Animals , Culicidae , Geologic Sediments
4.
Sci Total Environ ; 593-594: 368-374, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28346910

ABSTRACT

Five parabens used as preservatives in pharmaceuticals and personal care products (PPCPs) were measured in sewage sludges collected at 14 U.S. wastewater treatment plants (WWTPs) located in nine states. Detected concentration ranges (ng/g, dry weight) and frequencies were as follows: methyl paraben (15.9 to 203.0; 100%), propyl paraben (0.5 to 7.7; 100%), ethyl paraben (<0.6 to 2.6; 63%), butyl paraben (<0.4 to 4.3; 42%) and benzyl paraben (<0.4 to 3.3; 26%). The estrogenicity inherent to the sum of parabens detected in sewage sludge (ranging from 10.1 to 500.1pg/kg 17ß-estradiol equivalents) was insignificant when compared to the 106-times higher value calculated for natural estrogens reported in the literature to occur in sewage sludge. Temporal monitoring at one WWTP provided insights into temporal and seasonal variations in paraben concentrations. This is the first report on the occurrence of five parabens in sewage sludges from across the U.S., and internationally, the first on temporal variations of paraben levels in sewage sludge. Study results will help to inform the risk assessment of sewage sludge destined for land application (biosolids).


Subject(s)
Environmental Monitoring , Estrogens/analysis , Parabens/analysis , Sewage/chemistry , United States
5.
Aquat Toxicol ; 177: 250-60, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27315012

ABSTRACT

The growing incidence of hypoxic regions in coastal areas receiving high volumes of anthropogenic discharges requires more focused risk assessment of multiple stressors. One area needing further study is the combined effect of hypoxia and oil exposure. This study examined the short-term sublethal effects of co-exposure to hypoxia and water accommodated fractions (WAF) and chemically enhanced WAFs (CEWAFs) of Southern Louisiana Crude oil on detoxification, antioxidant defenses and genotoxicity in early life stage sheepshead minnow (Cyprinodon variegatus). CYP1A induction (evaluated by measuring EROD activity), activity of a number of key antioxidant enzymes (GST, GR, GPx, SOD, CAT, and GCL), levels of antioxidants (tGSH, GSH, and GSSG), evidence of lipid peroxidation (evaluated using the TBARS assay), and DNA damage (evaluated using the comet assay) provided a broad assessment of responses. Contaminant detoxification pathways induced by oil exposure were inhibited by co-exposure to hypoxia, indicating a maladaptive response. The interactive effects of oil and hypoxia on antioxidant defenses were mixed, but generally indicated less pronounced alterations, with significant increases in lipid peroxidation not observed. Hypoxia significantly enhanced DNA damage induced by oil exposure indicating the potential for significant deleterious effects post exposure. This study demonstrates the importance of considering hypoxia as an enhanced risk factor in assessing the effects of contaminants in areas where seasonal hypoxia may be prevalent.


Subject(s)
Antioxidants/metabolism , Cytochrome P-450 CYP1A1/metabolism , DNA Damage/drug effects , Hypoxia/physiopathology , Killifishes/physiology , Petroleum/toxicity , Water Pollutants, Chemical/toxicity , Animals , Biomarkers/metabolism , Comet Assay , DNA Damage/physiology , Inactivation, Metabolic , Larva/drug effects , Larva/physiology , Lipid Peroxidation/drug effects , Lipid Peroxidation/physiology , Stress, Physiological/drug effects , Stress, Physiological/physiology , Toxicity Tests
6.
Mar Pollut Bull ; 107(2): 499-508, 2016 Jun 30.
Article in English | MEDLINE | ID: mdl-27045048

ABSTRACT

Changes in bed sediment chemistry of Hempstead Bay (HB) have been evaluated in the wake of Hurricane Sandy, which resulted in the release of billions of liters of poorly-treated sewage into tributaries and channels throughout the bay. Surficial grab samples (top 5cm) collected before and (or) after Hurricane Sandy from sixteen sites in HB were analyzed for 74 wastewater tracers and steroid hormones, and total organic carbon. Data from pre- and post-storm comparisons of the most frequently detected wastewater tracers and ratios of steroid hormone and of polycyclic aromatic hydrocarbon concentrations indicate an increased sewage signal near outfalls and downstream of where raw sewage was discharged. Median concentration of wastewater tracers decreased after the storm at sites further from outfalls. Overall, changes in sediment quality probably resulted from a combination of additional sewage inputs, sediment redistribution, and stormwater runoff in the days to weeks following Hurricane Sandy.


Subject(s)
Cyclonic Storms , Environmental Monitoring , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Bays/chemistry , New York , Polycyclic Aromatic Hydrocarbons/analysis , Sewage
7.
Environ Sci Technol ; 49(10): 5948-55, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25884477

ABSTRACT

Pharmaceuticals are active substances found in sewage effluents and can negatively impact aquatic systems even at low concentrations. A fraction of these chemicals can be attached onto suspended solids and end up in sediments. This research shows concentrations of a wide group of pharmaceuticals in sediments from an urban estuarine setting (Jamaica Bay, New York). Highest concentrations (>75 ng g(-1)) were measured in surface sediments from the inner part of the bay, directly affected by sewage discharges and where water circulation is more restricted. Only 16 out of 61 target compounds were detected, and those positively charged (e.g., metoprolol) and/or highly hydrophobic (e.g., tamoxifen) were predominant. Their sediment-pore water partition coefficients were also calculated for the first time and were in a range between 11 and 2041 L/kg depending on the compound. Analysis of dated sediment cores revealed that pharmaceuticals were well preserved along the sedimentary column, a highly reducing environment. There was an increase in the concentration of most target compounds over the last five decades correlated with the increase in their usage, with some exceptions such as sulfamethazine (now used only for veterinary purposes). Thus, overall concentration of pharmaceuticals in sediment cores showed a doubling time of 9.2 years. Vertical distribution profiles for selected compounds also allowed reconstructing the history of contamination at Jamaica Bay by pharmaceuticals. The use of some of these chemicals as sewage molecular markers was also investigated.


Subject(s)
Bays/chemistry , Cities , Estuaries , Geologic Sediments/chemistry , Pharmaceutical Preparations/analysis , Sewage/chemistry , Water Pollutants, Chemical/analysis , New York City , Porosity , Time Factors
8.
Sci Total Environ ; 490: 671-8, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24887194

ABSTRACT

Nowadays, alcohol ethoxylates (AEOs) constitute the most important group of non-ionic surfactants, used in a wide range of applications such as household cleaners and detergents. Significant amounts of these compounds and their degradation products (polyethylene glycols, PEGs, which are also used for many other applications) reach aquatic environments, and are eliminated from the water column by degradation and sorption processes. This work deals with the environmental distribution of AEOs and PEGs in the Long Island Sound Estuary, a setting impacted by sewage discharges from New York City (NYC). The distribution of target compounds in seawater was influenced by tides, consistent with salinity differences, and concentrations in suspended solid samples ranged from 1.5 to 20.5 µg/g. The more hydrophobic AEOs were mostly attached to the particulate matter whereas the more polar PEGs were predominant in the dissolved form. Later, the sorption of these chemicals was characterized in the laboratory. Experimental and environmental sorption coefficients for AEOs and PEGs showed average values from 3607 to 164,994 L/kg and from 74 to 32,862 L/kg, respectively. The sorption data were fitted to a Freundlich isotherm model with parameters n and log KF between 0.8-1.2 and 1.46-4.39 L/kg, respectively. AEO and PEG sorptions on marine sediment were also found to be mostly not affected by changes in salinity.


Subject(s)
Alcohols/chemistry , Polyethylene Glycols/analysis , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry , New York City , Polyethylene Glycols/chemistry , Seawater/chemistry , Surface-Active Agents/analysis , Surface-Active Agents/chemistry , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical/chemistry
9.
Environ Sci Technol ; 48(14): 7881-90, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24932693

ABSTRACT

Removal of triclocarban (TCC) and triclosan (TCS) from wastewater is a function of adsorption, abiotic degradation, and microbial mineralization or transformation, reactions that are not currently controlled or optimized in the pollution control infrastructure of standard wastewater treatment. Here, we report on the levels of eight transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in raw and treated sewage sludge. Two sample sets were studied: samples collected once from 14 wastewater treatment plants (WWTPs) representing nine states, and multiple samples collected from one WWTP monitored for 12 months. Time-course analysis of significant mass fluxes (α=0.01) indicate that transformation of TCC (dechlorination) and TCS (methylation) occurred during sewage conveyance and treatment. Strong linear correlations were found between TCC and the human metabolite 2'-hydroxy-TCC (r=0.84), and between the TCC-dechlorination products dichlorocarbanilide (DCC) and monochlorocarbanilide (r=0.99). Mass ratios of DCC-to-TCC and of methyl-triclosan (MeTCS)-to-TCS, serving as indicators of transformation activity, revealed that transformation was widespread under different treatment regimes across the WWTPs sampled, though the degree of transformation varied significantly among study sites (α=0.01). The analysis of sludge sampled before and after different unit operation steps (i.e., anaerobic digestion, sludge heat treatment, and sludge drying) yielded insights into the extent and location of TCC and TCS transformation. Results showed anaerobic digestion to be important for MeTCS transformation (37-74%), whereas its contribution to partial TCC dechlorination was limited (0.4-2.1%). This longitudinal and nationwide survey is the first to report the occurrence of transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in sewage sludge.


Subject(s)
Carbanilides/metabolism , Sewage/chemistry , Triclosan/metabolism , Water Pollutants, Chemical/metabolism , Bacteria/metabolism , Biodegradation, Environmental , Biotransformation , Carbanilides/isolation & purification , Environmental Monitoring , Humans , Time Factors , Triclosan/isolation & purification , United States , Wastewater/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification
10.
Mar Pollut Bull ; 85(2): 710-9, 2014 Aug 30.
Article in English | MEDLINE | ID: mdl-24467856

ABSTRACT

This work deals with the environmental distribution of nonionic surfactants (nonylphenol and alcohol ethoxylates), their metabolites (NP, nonylphenol; NPEC, nonylphenol ethoxycarboxylates; and PEG, polyethylene glycols) and a selection of 64 pharmaceuticals in the Long Island Sound (LIS) Estuary which receives important sewage discharges from New York City (NYC). Most target compounds were efficiently removed (>95%) in one wastewater treatment plant monitored, with the exception of NPEC and some specific drugs (e.g., hydrochlorothiazide). Concentrations of surfactants (1.4-4.5 µg L(-1)) and pharmaceuticals (0.1-0.3 µg L(-1)) in seawater were influenced by tides and sampling depth, consistent with salinity differences. Surfactants levels in suspended solids samples were higher than 1 µg g(-1), whereas only most hydrophobic or positively charged pharmaceuticals could be found (e.g., tamoxifen, clarithromycin). Maximum levels of target compounds in LIS sediments (PEG at highest concentrations, 2.8 µg g(-1)) were measured nearest NYC, sharply decreasing with distance from major sewage inputs.


Subject(s)
Estuaries , Geologic Sediments/chemistry , Pharmaceutical Preparations/analysis , Surface-Active Agents/analysis , Water Pollutants, Chemical/analysis , Clarithromycin/analysis , Geography , New York , Phenols/analysis , Polyethylene Glycols/analysis , Rivers , Seawater/chemistry , Sewage/chemistry , Tamoxifen/analysis , Urbanization , Waste Disposal, Fluid , Wastewater , Water Purification
11.
Geochem Trans ; 13: 3, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22313632

ABSTRACT

The abundant iron sulfide mineral pyrite has been shown to catalytically produce hydrogen peroxide (H2O2) and hydroxyl radical (.OH) in slurries of oxygenated water. Understanding the formation and fate of these reactive oxygen species is important to biological and ecological systems as exposure can lead to deleterious health effects, but also environmental engineering during the optimization of remediation approaches for possible treatment of contaminated waste streams. This study presents the use of the amino acid phenylalanine (Phe) to monitor the kinetics of pyrite-induced .OH formation through rates of hydroxylation forming three isomers of tyrosine (Tyr) - ortho-, meta-, and para-Tyr. Results indicate that about 50% of the Phe loss results in Tyr formation, and that these products further react with .OH at rates comparable to Phe. The overall loss of Phe appeared to be pseudo first-order in [Phe] as a function of time, but for the first time it is shown that initial rates were much less than first-order as a function of initial substrate concentration, [Phe]o. These results can be rationalized by considering that the effective concentration of .OH in solution is lower at a higher level of reactant and that an increasing fraction of .OH is consumed by Phe-degradation products as a function of time. A simplified first-order model was created to describe Phe loss in pyrite slurries which incorporates the [Phe]o, a first-order dependence on pyrite surface area, the assumption that all Phe degradation products compete equally for the limited supply of highly reactive .OH, and a flux that is related to the release of H2O2 from the pyrite surface (a result of the incomplete reduction of oxygen at the pyrite surface). An empirically derived rate constant, Kpyr, was introduced to describe a variable .OH-reactivity for different batches of pyrite. Both the simplified first-order kinetic model, and a more detailed numerical simulation, yielded results that compare well to the observed kinetic data describing the effects of variations in concentrations of both initial Phe and pyrite. This work supports the use of Phe as a useful probe to assess the formation of .OH in the presence of pyrite, and its possible utility for similar applications with other minerals.

12.
Anal Bioanal Chem ; 402(7): 2359-68, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22002557

ABSTRACT

Surfactants and their metabolites can be found in aquatic environments at relatively high concentrations compared with other micropollutants due in part to the exceptionally large volumes produced every year. We have focused our attention here on the most widely used nonionic surfactants, alcohol ethoxylates (AEOs), and on nonylphenol ethoxylate (NPEO) degradation products (short-chain nonylphenol ethoxylates, NP1-3EO, nonylphenol, NP, and nonylphenol ethoxycarboxylates, NP1-2EC), which are endocrine-disrupting compounds. Our main objective in this work was to develop a methodology aimed at the extraction, isolation, and improved analysis of these analytes in environmental samples at trace levels. Extraction recoveries of target compounds were determined for sediment samples after ultrasonic extraction and purification using HLB or C18 solid-phase extraction minicolumns. Recovery percentages were usually between 61 and 102% but were lower for longer AEO ethoxymers. Identification and quantification of target compounds was carried out using a novel ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS-MS) approach, a combination that provides higher sensitivity and faster analysis than prior methods using conventional high-performance liquid chromatography-mass spectrometry. Limits of detection were usually below 0.5 ng/g, being higher for monoethoxylate species (>5 ng/g) because of poor ionization. The method was used for analyzing surface sediment samples collected at Jamaica Bay (NY) in 2008. The highest values (28,500 ng/g for NP, 4,200 ng/g for NP1-3EO, 22,400 ng/g for NP1-2EC, and 1,500 ng/g for AEOs) were found in a sampling station from a restricted water circulation area that is heavily impacted by wastewater discharges.


Subject(s)
Alcohols/analysis , Chromatography, Liquid/methods , Phenols/analysis , Tandem Mass Spectrometry/methods
13.
J Chromatogr A ; 1218(30): 4799-807, 2011 Jul 29.
Article in English | MEDLINE | ID: mdl-21377683

ABSTRACT

Synthetic surfactants are economically important chemicals, as they are widely used in household cleaning detergents, textiles, paints, polymers and personal care products. In this work we have developed a method capable of the isolation and analysis of the most widely used surfactants (linear alkylbenzene sulfonates, LAS, nonylphenol ethoxylates, NPEO, and alcohol ethoxylates, AEO) and their main degradation products (sulfophenyl carboxylic acids, SPC, nonylphenol ethoxycarboxylates, NPEC, and polyethylene glycols, PEG) in aqueous and solid environmental matrices. First, analytes were extracted by ultrasonic extraction from sediments and suspended solids using methanol at 50°C as solvent and 3 cycles (30 min per cycle). Clean-up and pre-concentration of the extracts and water samples were carried out by solid-phase extraction (SPE), using Oasis HLB cartridges. Recoveries were generally about 80% for most compounds. Identification and quantification of target compounds were performed by liquid chromatography-time-of-flight-mass spectrometry (LC-ToF-MS), which has been much less used in the field of environmental analysis than other MS techniques. Examples which illustrate the possible advantages of this technique for multi-analyte analysis of target and non-target contaminants in environmental samples are provided. Finally, the methodology developed here was validated by measuring the concentration of surfactants and their metabolites in selected marine sediment and seawater samples collected in Long Island Sound (NY), and in influent and effluent wastewater from Stony Brook treatment plant (NY). This paper presents some of the first data relative to the occurrence of PEG in the environment, especially in sediments where concentrations were generally higher (up to 1490 µg/kg) than those for other classes of targeted surfactants and their metabolites.


Subject(s)
Chromatography, Liquid/methods , Detergents/chemistry , Geologic Sediments/chemistry , Seawater/chemistry , Solid Phase Extraction/methods , Alcohols/chemistry , Alkanesulfonic Acids/chemistry , Carboxylic Acids/chemistry , Detergents/metabolism , Linear Models , Polyethylene Glycols/chemistry , Reproducibility of Results
14.
Environ Sci Technol ; 44(19): 7561-8, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20804121

ABSTRACT

The distributions of wastewater-derived quaternary ammonium compounds (QACs) were determined in surficial sediments (n = 47) collected from the urbanized lower Hudson River basin. The most abundant class of QACs were dialkyldimethylammonium compounds (DADMACs, with C8 to C18 carbon chain lengths; median ΣDADMAC = 26 µg/g), followed by benzylalkyldimethylammonium compounds (BAC, C12-C18; 1.5 µg/g), and alkyltrimethylammonium compounds (ATMAC, primarily C16 and C18; 0.52 µg/g). The concentrations of total QACs are higher than those of other conventional organic contaminants determined on the same samples (e.g., median ΣPAH level of 2.1 µg/g). Comparatively high concentrations, correlations with sewage derived contaminants, and the relatively constant compositions of QACs observed over large areas suggest that many sediment-sorbed QACs can be relatively persistent in receiving waters. Unusually large concentration-dependent sorption is considered as a mechanism that likely affects persistence of these intrinsically biodegradable chemicals under field conditions. There has been comparatively little field-based research on these classes of cationic surfactants; given the levels of QACs observed here, it is suggested that further investigation is warranted.


Subject(s)
Geologic Sediments/chemistry , Quaternary Ammonium Compounds/analysis , Water Pollutants, Chemical/chemistry , Fresh Water/chemistry , Sewage
15.
Environ Sci Technol ; 44(19): 7569-75, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20804122

ABSTRACT

The distribution of alkyltrimethylammonium compounds (ATMAC), cationic surfactants used in a wide variety of applications, has been determined in sediments from Jamaica Bay (NY). Total concentrations in surficial sediments collected between 1998 and 2008 ranged from 361 to 6750 ng/g. The highest values were found in samples from a deeper basin directly affected by treated wastewater discharges. Behentrimonium, a mixture dominated by a homologue having 22 carbon atoms in its alkyl chain (ATMAC 22), was identified for the first time using time-of-flight mass spectrometry and accounted for approximately 80% of the total ATMAC in recent sediment samples. Analyses of a dated sediment core and subsequent surface grab samples revealed an exponential increase in concentration over the last three decades with a doubling time of 3.9 years. Similar temporal trends were seen in surface samples from other sites in Jamaica Bay and Newton Creek (NY), another site greatly influenced by wastewater discharges. This dramatic increase in ATMAC 22 reflects greater use of behentrimonium and likely replacement of other products containing other ATMAC homologues in personal care products. Further monitoring is recommended to assess the environmental risk and fate of this persistent emerging contaminant.


Subject(s)
Geologic Sediments/chemistry , Quaternary Ammonium Compounds/analysis , Water Pollutants, Chemical/analysis , Mass Spectrometry , Urbanization
16.
Geochem Trans ; 11(1): 2, 2010 Apr 26.
Article in English | MEDLINE | ID: mdl-20420694

ABSTRACT

Cellular exposure to particulate matter with concomitant formation of reactive oxygen species (ROS) and oxidization of biomolecules may lead to negative health outcomes. Evaluating the particle-induced formation of ROS and the oxidation products from reaction of ROS with biomolecules is useful for gaining a mechanistic understanding of particle-induced oxidative stress. Aqueous suspensions of pyrite particles have been shown to form hydroxyl radicals and degrade nucleic acids. Reactions between pyrite-induced hydroxyl radicals and nucleic acid bases, however, remain to be determined. Here, we compared the oxidation of adenine by Fenton-generated (i.e., ferrous iron and hydrogen peroxide) hydroxyl radicals to adenine oxidation by hydroxyl radicals generated in pyrite aqueous suspensions. Results show that adenine oxidizes in the presence of pyrite (without the addition of hydrogen peroxide) and that the rate of oxidation is dependent on the pyrite loading. Adenine oxidation was prevented by addition of either catalase or ethanol to the pyrite/adenine suspensions, which implies that hydrogen peroxide and hydroxyl radicals are causing the adenine oxidation. The adenine oxidation products, 8-oxoadenine and 2-hydroxyadenine, were the same whether hydroxyl radicals were generated by Fenton or pyrite-initiated reactions. Although nucleic acid bases are unlikely to be directly exposed to pyrite particles, the formation of ROS in the vicinity of cells may lead to oxidative stress.

17.
Anal Chem ; 81(19): 7926-35, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19739657

ABSTRACT

A sensitive and robust method of analysis for quaternary ammonium compounds (QACs) in marine sediments is presented. Methods for extraction, sample purification, and HPLC-time-of-flight MS analysis were optimized, providing solutions to problems associated with analysis of QACs, such as dialkyldimethylammonium (DADMAC) and benzalkonium (BAC) compounds experienced previously. Recognized in this study are the exceptionally high positive mass defects characteristic of alkylammonium or protonated alkylamine ions. No alternative and chemically viable elemental formulas exist within 25.2 mDa when the number of double bond equivalents is low, effectively allowing facile discrimination of this compound class in complex mixtures. Accurate mass measurements of diagnostic collision-induced dissociation fragment ions and heavy isotope peaks were obtained and also seen to be uniquely heavy compared to other elemental formulas. The ability to resolve masses of alkylamine fragment ions is much greater than for the molecular ions of BACs and many other chemicals, opening up a range of potential applications. The power of utilizing a combination of approaches is illustrated with the identification of nontargeted DADMAC C8:C8 and C8:C10, two widely used biocides previously unreported in environmental samples. Concentrations of QACs in sewage-impacted estuarine sediments (up to 74 microg/g) were higher than concentrations of other organic contaminants measured in the same or nearby samples, suggesting that further study is needed.


Subject(s)
Chromatography, High Pressure Liquid/methods , Geologic Sediments/chemistry , Quaternary Ammonium Compounds/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Molecular Conformation , Quaternary Ammonium Compounds/isolation & purification
18.
Environ Pollut ; 157(3): 994-1002, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19038482

ABSTRACT

Microbial degradation rates were measured for 19 pharmaceuticals in estuarine and coastal surface water samples. Antipyrine, carbamazepine, cotinine, sulfamethoxazole, and trimethoprim were the most refractory (half-lives, t(1/2)=35 to >100 days), making them excellent candidates for wastewater tracers. Nicotine, acetaminophen, and fluoxetine were labile across all treatments (t(1/2)=0.68-11 days). Caffeine, diltiazem, and nifedipine were also and relatively labile in all but one of the treatments (t(1/2)=3.5-13 days). Microbial degradation of caffeine was further confirmed by production (14)CO(2). The fastest decay of non-refractory compounds was always observed in more sewage-affected Jamaica Bay waters. Degradation rates for the majority of these pharmaceuticals are much slower than reported rates for small biomolecules, such as glucose and amino acids. Batch sorption experiments indicate that removal of these soluble pharmaceuticals from the water column to sediments is a relatively insignificant removal process in these receiving waters.


Subject(s)
Bacteria/metabolism , Pharmaceutical Preparations/metabolism , Waste Disposal, Fluid , Water Microbiology , Water Pollutants, Chemical/metabolism , Absorption , Antipyrine/analysis , Biodegradation, Environmental , Caffeine/analysis , Carbamazepine/analysis , Cotinine/analysis , Diltiazem/analysis , Ecology/methods , Endocrine Disruptors/metabolism , Half-Life , New York , Nifedipine/analysis , Pharmaceutical Preparations/analysis , Seawater , Solubility , Sulfamethoxazole/analysis , Trimethoprim , Water Pollutants, Chemical/analysis
19.
Environ Sci Technol ; 41(16): 5795-802, 2007 Aug 15.
Article in English | MEDLINE | ID: mdl-17874789

ABSTRACT

Pharmaceuticals and selected major human metabolites are ubiquitous in Jamaica Bay, a wastewater-impacted estuary at concentrations in the low ng/L to low/microg/L range. Concentrations throughout the bay are often consistent with conservative behavior during dry-weather conditions, as evidenced by nearly linear concentration-salinity relationships. Deviation from conservative behavior is noted for some pharmaceuticals and attributed to microbial degradation. Caffeine, cotinine, nicotine, and paraxanthine were detected with the greatest analytical signal, although evidence is presented for in situ removal, especially for nicotine and caffeine. There is little evidence for significant removal of carbamazepine and sulfamethoxazole, suggesting they are more conservative and useful wastewater tracers. Immediately following heavy precipitation, which induced a combined sewer overflow (CSO) event, the concentrations of all compounds but acetaminophen and nicotine decreased or disappeared. This observation is consistent with a simple model illustrating the effect of precipitation has on pharmaceutical concentration in the wastewater stream, given the balance between dilution from rain and the bypass of treatment.


Subject(s)
Pharmaceutical Preparations/analysis , Rivers/chemistry , Urbanization , Weather , Environmental Restoration and Remediation , Geography , Models, Chemical , New York City , Pharmaceutical Preparations/isolation & purification , Rain , Sodium Chloride , Waste Disposal, Fluid , Water Purification
20.
Environ Sci Technol ; 40(16): 4894-902, 2006 Aug 15.
Article in English | MEDLINE | ID: mdl-16955883

ABSTRACT

Septic systems serve approximately 25% of U.S. households and may be an important source of estrogenic and other organic wastewater contaminants (OWC) to groundwater. We monitored several estrogenic OWC, including nonylphenol (NP), nonylphenol mono- and diethoxycarboxylates (NP1EC and NP2EC), the steroid hormones 17beta-estradiol (E2), estrone (E1) and their glucuronide and sulfate conjugates, and other OWC such as methylene blue active substances (MBAS), caffeine and its degradation product paraxanthine, and two fluorescent whitening agents in a residential septic system and in downgradient groundwater. E1 and E2 were present predominantly as free estrogens in groundwater, and near-source groundwater concentrations of all OWC were highest in the suboxic to anoxic portion of the wastewater plume, where concentrations of most OWC were similar to those observed in the septic tank on the same day. NP and NP2EC were up to 6- to 30-fold higher, and caffeine and paraxanthine were each 60-fold lower than septic tank concentrations, suggesting net production and removal, respectively, of these constituents. At the most shallow, oxic depth, concentrations of all OWC except for NP2EC were substantially lower than in the tank and in deeper wells. Yet boron, specific conductance, and the sum of nitrate-and ammonia-nitrogen were highest at this shallow depth, suggesting preferential losses of OWC along the more oxic flow lines. As far as 6.0 m downgradient, concentrations of many OWC were within a factor of 2 of near-source concentrations. The results suggest that there is the potential for migration of these OWC, which are unregulated and not routinely monitored, in groundwater.


Subject(s)
Environmental Monitoring/methods , Estrogens/analysis , Ethylene Glycols/analysis , Steroids/analysis , Waste Disposal, Fluid/methods , Water Purification , Caffeine/analysis , Estrogens/chemistry , Estrone/chemistry , Massachusetts , Nitrogen , Oxygen/chemistry , Phenols , Sewage , Waste Management , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...