Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 54(50): 15100-4, 2015 Dec 07.
Article in English | MEDLINE | ID: mdl-26494225

ABSTRACT

Host-guest chemistry is usually carried out in either water or organic solvents. To investigate the utility of alternative solvents, three different coordination cages were dissolved in neat ionic liquids. By using (19) F NMR spectroscopy to monitor the presence of free and bound guest molecules, all three cages were demonstrated to be stable and capable of encapsulating guests in ionic solution. Different cages were found to preferentially dissolve in different phases, allowing for the design of a triphasic sorting system. Within this system, three coordination cages, namely Fe4 L6 2, Fe8 L12 3, and Fe4 L4 4, each segregated into a distinct layer. Upon the addition of a mixture of three different guests, each cage (in each separate layer) selectively bound its preferred guest.

2.
Angew Chem Int Ed Engl ; 54(38): 11122-7, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26235039

ABSTRACT

The subcomponent self-assembly of a bent dialdehyde ligand and different cationic and anionic templates led to the formation of two new metallosupramolecular architectures: a Fe(II) 4 L6 molecular rectangle was isolated following reaction of the ligand with iron(II) tetrafluoroborate, and a M5 L6 trigonal bipyramidal structure was constructed from either zinc(II) tetrafluoroborate or cadmium(II) trifluoromethanesulfonate. The spatially constrained arrangement of the three equatorial metal ions in the M5 L6 structures was found to induce small-molecule transformations. Atmospheric carbon dioxide was fixed as carbonate and bound to the equatorial metal centers in both the Zn5 L6 and Cd5 L6 assemblies, and sulfur dioxide was hydrated and bound as the sulfite dianion in the Zn5 L6 structure. Subsequent in situ oxidation of the sulfite dianion resulted in a sulfate dianion bound within the supramolecular pocket.

3.
J Am Chem Soc ; 137(32): 10437-42, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-26214819

ABSTRACT

We report on the assembly of 2,6-pyridinedicarboxamide ligands (1) with point chirality about lanthanide metal ion (Ln(3+)) templates, in which the helical chirality of the resulting entwined 3:1 ligand:metal complexes is covalently captured by ring-closing olefin metathesis to form topologically chiral molecular trefoil knots of single handedness. The ligands do not self-sort (racemic ligands form a near-statistical mixture of homoleptic and heteroleptic lanthanide complexes), but the use of only (R,R)-1 leads solely to a trefoil knot of Λ-handedness, whereas (S,S)-1 forms the Δ-trefoil knot with complete stereoselectivity. The knots and their isomeric unknot macrocycles were characterized by NMR spectroscopy, mass spectrometry, and X-ray crystallography and the expression of the chirality that results from the topology of the knots studied by circular dichroism.


Subject(s)
Lanthanoid Series Elements/chemistry , Molecular Conformation , Alkenes/chemistry , Chemistry Techniques, Synthetic , Circular Dichroism , Crystallography, X-Ray , Ligands , Magnetic Resonance Spectroscopy , Spectrophotometry, Ultraviolet
4.
ACS Cent Sci ; 1(9): 504-509, 2015 Dec 23.
Article in English | MEDLINE | ID: mdl-26779566

ABSTRACT

Many examples exist of biological self-assembled structures that restructure in response to external stimuli, then return to their previous state over a defined time scale, but most synthetic investigations so far have focused on systems that switch between states representing energetic minima upon stimulus application. Here we report an approach in which triphenylphosphine is used as a chemical fuel to maintain CuI-based self-assembled metallosupramolecular architectures for defined periods of time. This method was used to exert control over the threading and dethreading of the ring of a pseudorotaxane's axle, as well as to direct the uptake and release of a guest from a metal-organic host. Management of the amount of fuel and catalyst added allowed for time-dependent regulation of product concentration.

5.
Angew Chem Int Ed Engl ; 53(40): 10701-5, 2014 Sep 26.
Article in English | MEDLINE | ID: mdl-25139572

ABSTRACT

The reaction of 2,6-diformylpyridine with diverse amines and Pd(II) ions gave rise to a variety of metallosupramolecular species, in which the Pd(II) ion is observed to template a tridentate bis(imino)pyridine ligand. These species included a mononuclear complex as well as [2+2] and [3+3] macrocycles. The addition of pyridine-containing macrocyclic capping ligands allows for topological complexity to arise, thereby enabling the straightforward preparation of structures that include a [2]catenane, a [2]rotaxane, and a doubly threaded [3]rotaxane.

6.
J Am Chem Soc ; 135(45): 17052-9, 2013 Nov 13.
Article in English | MEDLINE | ID: mdl-24102100

ABSTRACT

Surface-confined double-helical polymers are generated by dynamic covalent assembly with preservation of chirality, metal coordination environment, and oxidation state of the precursor complexes. This one-step procedure involves both in solution and solution-to-surface assembly and resulted in chiral interfaces where pairs of ligands are wrapped around arrays of metal ions. In-plane XRD experiments revealed the formation of a highly ordered structure along the substrate surface. The chirality of the surfaces is expressed by the selective recognition of 3,4-dihydroxyphenylalanine (DOPA). The CD measurements show a response of the Δ-polymer-modified quartz substrates toward D-DOPA, whereas no change was observed after treatment with L-DOPA. These coordination-based interfaces assembled on metal-oxide substrates in combination with a redox-probe, [Os(bpy)3](PF6)2, in solution can resemble the behavior of a rectifier.


Subject(s)
Dihydroxyphenylalanine/chemistry , Polymers/chemistry , Coordination Complexes/chemistry , Dihydroxyphenylalanine/isolation & purification , Levodopa/chemistry , Levodopa/isolation & purification , Metals/chemistry , Models, Molecular , Molecular Conformation , Oxidation-Reduction , Oxides/chemistry , Stereoisomerism
8.
Chem Soc Rev ; 42(4): 1728-54, 2013 Feb 21.
Article in English | MEDLINE | ID: mdl-23032789

ABSTRACT

Over the last two decades the field of metallosupramolecular self-assembly has emerged as a promising research area for the development of intricate, three-dimensional structures of increasing complexity and functionality. The advent of this area of research has strongly benefited from design principles that considered the ligand geometry and metal coordination geometry, thus opening up routes towards rationally designed classical (Archimedean or Platonic) architectures. In this tutorial review, we will focus on more recent developments in the design and synthesis of three-dimensional suprastructures which have non-classical architectures (non-Archimedean/Platonic solids) and we will explicitly address the secondary effects responsible for their formation. Three classes of metallosupramolecular assemblies will be discussed: architectures formed through the combination of a single ligand and metal, heteroleptic structures and heterometallic structures. It is hoped that our exposition may suggest how different principles employed in these three classes of structures might be combined to create even greater complexity and potential for function.

SELECTION OF CITATIONS
SEARCH DETAIL
...