Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 24(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38069293

ABSTRACT

Controlled delivery of proteins has immense potential for the treatment of various human diseases, but effective strategies for their delivery are required before this potential can be fully realized. Recent research has identified hydrogels as a promising option for the controlled delivery of therapeutic proteins, owing to their ability to respond to diverse chemical and biological stimuli, as well as their customizable properties that allow for desired delivery rates. This study utilized alginate and chitosan as model polymers to investigate the effects of hydrogel properties on protein release rates. The results demonstrated that polymer properties, concentration, and crosslinking density, as well as their responses to pH, can be tailored to regulate protein release rates. The study also revealed that hydrogels may be combined to create double-network hydrogels to provide an additional metric to control protein release rates. Furthermore, the hydrogel scaffolds were also found to preserve the long-term function and structure of encapsulated proteins before their release from the hydrogels. In conclusion, this research demonstrates the significance of integrating porosity and response to stimuli as orthogonal control parameters when designing hydrogel-based scaffolds for therapeutic protein release.


Subject(s)
Chitosan , Hydrogels , Humans , Hydrogels/chemistry , Polymers/chemistry , Proteins , Chitosan/chemistry , Hydrogen-Ion Concentration
2.
Int J Mol Sci ; 23(8)2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35456935

ABSTRACT

Over the past few years, researchers have demonstrated the use of hydrogels to design drug delivery platforms that offer a variety of benefits, including but not limited to longer circulation times, reduced drug degradation, and improved targeting. Furthermore, a variety of strategies have been explored to develop stimulus-responsive hydrogels to design smart drug delivery platforms that can release drugs to specific target areas and at predetermined rates. However, only a few studies have focused on exploring how innate hydrogel properties can be optimized and modulated to tailor drug dosage and release rates. Here, we investigated the individual and combined roles of polymer concentration and crosslinking density (controlled using both chemical and nanoparticle-mediated physical crosslinking) on drug delivery rates. These experiments indicated a strong correlation between the aforementioned hydrogel properties and drug release rates. Importantly, they also revealed the existence of a saturation point in the ability to control drug release rates through a combination of chemical and physical crosslinkers. Collectively, our analyses describe how different hydrogel properties affect drug release rates and lay the foundation to develop drug delivery platforms that can be programmed to release a variety of bioactive payloads at defined rates.


Subject(s)
Hydrogels , Polymers , Drug Delivery Systems , Drug Liberation , Hydrogels/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL