Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Med Chem ; 56(1): 345-56, 2013 Jan 10.
Article in English | MEDLINE | ID: mdl-23214979

ABSTRACT

The Janus kinases (JAKs) are involved in multiple signaling networks relevant to inflammatory diseases, and inhibition of one or more members of this class may modulate disease activity or progression. We optimized a new inhibitor scaffold, 3-amido-5-cyclopropylpyrrolopyrazines, to a potent example with reasonable kinome selectivity, including selectivity for JAK3 versus JAK1, and good biopharmaceutical properties. Evaluation of this analogue in cellular and in vivo models confirmed functional selectivity for modulation of a JAK3/JAK1-dependent IL-2 stimulated pathway over a JAK1/JAK2/Tyk2-dependent IL-6 stimulated pathway.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Cyclopropanes/chemical synthesis , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 3/antagonists & inhibitors , Pyrazines/chemical synthesis , Pyrroles/chemical synthesis , Administration, Oral , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Caco-2 Cells , Crystallography, X-Ray , Cyclopropanes/pharmacokinetics , Cyclopropanes/pharmacology , Gene Knockdown Techniques , High-Throughput Screening Assays , Humans , Interleukin-2/physiology , Janus Kinase 1/genetics , Janus Kinase 1/metabolism , Janus Kinase 3/genetics , Janus Kinase 3/metabolism , Mice , Models, Molecular , Pyrazines/pharmacokinetics , Pyrazines/pharmacology , Pyrroles/pharmacokinetics , Pyrroles/pharmacology , RNA, Small Interfering/genetics , Rats , Receptors, Interleukin-6/physiology , Signal Transduction/drug effects , Structure-Activity Relationship , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
2.
Protein Sci ; 20(2): 428-36, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21280133

ABSTRACT

Bruton's tyrosine kinase (BTK) plays a key role in B cell receptor signaling and is considered a promising drug target for lymphoma and inflammatory diseases. We have determined the X-ray crystal structures of BTK kinase domain in complex with six inhibitors from distinct chemical classes. Five different BTK protein conformations are stabilized by the bound inhibitors, providing insights into the structural flexibility of the Gly-rich loop, helix C, the DFG sequence, and activation loop. The conformational changes occur independent of activation loop phosphorylation and do not correlate with the structurally unchanged WEI motif in the Src homology 2-kinase domain linker. Two novel activation loop conformations and an atypical DFG conformation are observed representing unique inactive states of BTK. Two regions within the activation loop are shown to structurally transform between 3(10)- and α-helices, one of which collapses into the adenosine-5'-triphosphate binding pocket. The first crystal structure of a Tec kinase family member in the pharmacologically important DFG-out conformation and bound to a type II kinase inhibitor is described. The different protein conformations observed provide insights into the structural flexibility of BTK, the molecular basis of its regulation, and the structure-based design of specific inhibitors.


Subject(s)
Protein Kinase Inhibitors/chemistry , Protein-Tyrosine Kinases/chemistry , Agammaglobulinaemia Tyrosine Kinase , Animals , Mice , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Oxazines/chemistry , Oxazines/metabolism , Protein Kinase Inhibitors/metabolism , Protein Structure, Tertiary , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Pyridines/chemistry , Pyridines/metabolism , X-Ray Diffraction
3.
Bioorg Med Chem Lett ; 21(1): 423-6, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21074992

ABSTRACT

A novel series of (E)-1-((2-(1-methyl-1H-imidazol-5-yl) quinolin-4-yl) methylene) thiosemicarbazides was discovered as potent inhibitors of IKKß. In this Letter we document our efforts at further optimization of this series, culminating in 2 with submicromolar potency in a HWB assay and efficacy in a CIA mouse model.


Subject(s)
I-kappa B Kinase/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Quinolines/chemistry , Semicarbazides/chemistry , Thiourea/analogs & derivatives , Animals , Dogs , Female , Hepatocytes/metabolism , High-Throughput Screening Assays , Humans , I-kappa B Kinase/metabolism , Macaca mulatta , Male , Mice , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Quinolines/chemical synthesis , Quinolines/pharmacokinetics , Rats , Semicarbazides/chemical synthesis , Semicarbazides/pharmacokinetics , Structure-Activity Relationship , Thiourea/chemical synthesis , Thiourea/chemistry , Thiourea/pharmacokinetics
4.
Bioorg Med Chem Lett ; 21(1): 417-22, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21074993

ABSTRACT

A novel series of (E)-1-((2-(1-methyl-1H-imidazol-5-yl) quinolin-4-yl) methylene) thiosemicarbazides was discovered as potent inhibitors of IKKß. In this Letter we document our early efforts at optimization of the quinoline core, the imidazole and the semithiocarbazone moiety. Most potency gains came from substitution around the 6- and 7-positions of the quinoline ring. Replacement of the semithiocarbazone with a semicarbazone decreased potency but led to some measurable exposure.


Subject(s)
I-kappa B Kinase/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Semicarbazides/chemistry , Animals , Dogs , Female , High-Throughput Screening Assays , I-kappa B Kinase/metabolism , Male , Microsomes/metabolism , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Quinolines/chemistry , Rats , Semicarbazides/chemical synthesis , Semicarbazides/pharmacokinetics , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 20(17): 5217-20, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20655210

ABSTRACT

JNK2 and p38alpha are closely related mitogen-activated protein kinases that regulate various cellular activities and are considered drug targets for inflammatory diseases. We have determined the X-ray crystal structure of the clinical phase II p38alpha inhibitor BIRB796 bound to its off-target JNK2. This shows for the first time a JNK subfamily member in the DFG-out conformation. The fully resolved activation loop reveals that BIRB796 inhibits JNK2 activation by stabilizing the loop in a position that does not allow its phosphorylation by upstream kinases. The structure suggests that substituents at the BIRB796 morpholino group and modifications of the t-butyl moiety should further increase the p38alpha to JNK2 potency ratio. For the design of selective DFG-out binding JNK2 inhibitors, the binding pocket of the BIRB796 tolyl group may have the best potential.


Subject(s)
Mitogen-Activated Protein Kinase 9/chemistry , Mitogen-Activated Protein Kinases/chemistry , Naphthalenes/chemistry , Protein Kinase Inhibitors/chemistry , Pyrazoles/chemistry , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Crystallography, X-Ray , Drug Design , Models, Molecular , Molecular Structure
6.
Chem Biol Drug Des ; 73(4): 466-70, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19220318

ABSTRACT

Spleen tyrosine kinase is considered an attractive drug target for the treatment of allergic and antibody mediated autoimmune diseases. We have determined the co-crystal structures of spleen tyrosine kinase complexed with three known inhibitors: YM193306, a 7-azaindole derivative and R406. The cis-cyclohexyldiamino moiety of YM193306 is forming four hydrophobically shielded polar interactions with the spleen tyrosine kinase protein and is therefore crucial for the high potency of this inhibitor. Its primary amino group is inducing a conformational change of the spleen tyrosine kinase DFG Asp side chain. The crystal structure of the 7-azaindole derivative bound to spleen tyrosine kinase is the first demonstration of a 2-substituted 7-azaindole bound to a protein kinase. Its indole-amide substituent is tightly packed between the N- and C-terminal kinase lobes. The co-crystal structure of the spleen tyrosine kinase-R406 complex shows two main differences to the previously reported structure of spleen tyrosine kinase soaked with R406: (i) the side chain of the highly conserved Lys is disordered and not forming a hydrogen bond to R406 and (ii) the DFG Asp side chain is pointing away from and not towards R406. The novel protein-ligand interactions and protein conformational changes revealed in these structures guide the rational design and structure-based optimization of second-generation spleen tyrosine kinase inhibitors.


Subject(s)
Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/metabolism , Spleen/enzymology , Crystallography, X-Ray , Humans , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Ligands , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Protein-Tyrosine Kinases/antagonists & inhibitors , Syk Kinase
7.
J Mol Biol ; 383(4): 885-93, 2008 Nov 21.
Article in English | MEDLINE | ID: mdl-18801372

ABSTRACT

c-Jun N-terminal kinase (JNK) 2 is a member of the mitogen-activated protein (MAP) kinase group of signaling proteins. MAP kinases share a common sequence insertion called "MAP kinase insert", which, for ERK2, has been shown to interact with regulatory proteins and, for p38alpha, has been proposed to be involved in the regulation of catalytic activity. We have determined the crystal structure of human JNK2 complexed with an indazole inhibitor by applying a high-throughput protein engineering and surface-site mutagenesis approach. A novel conformation of the activation loop is observed, which is not compatible with its phosphorylation by upstream kinases. This activation inhibitory conformation of JNK2 is stabilized by the MAP kinase insert that interacts with the activation loop in an induced-fit manner. We therefore suggest that the MAP kinase insert of JNK2 plays a role in the regulation of JNK2 activation, possibly by interacting with intracellular binding partners.


Subject(s)
Mitogen-Activated Protein Kinase 9/chemistry , Mitogen-Activated Protein Kinase 9/metabolism , Protein Structure, Tertiary , Binding Sites , Crystallography, X-Ray , Enzyme Activation , Humans , Ligands , MAP Kinase Signaling System/physiology , Mitogen-Activated Protein Kinase 9/genetics , Models, Molecular , Molecular Sequence Data , Molecular Structure , Protein Binding , Protein Engineering
8.
Bioorg Med Chem Lett ; 18(9): 2990-5, 2008 May 01.
Article in English | MEDLINE | ID: mdl-18400495

ABSTRACT

Non-nucleoside inhibitors of HCV NS5b RNA polymerase were discovered by a fragment-based lead discovery approach, beginning with crystallographic fragment screening. The NS5b binding affinity and biochemical activity of fragment hits and inhibitors was determined by surface plasmon resonance (Biacore) and an enzyme inhibition assay, respectively. Crystallographic fragment screening hits with approximately 1-10mM binding affinity (K(D)) were iteratively optimized to give leads with approximately 200nM biochemical activity and low microM cellular activity in a Replicon assay.


Subject(s)
Antiviral Agents/therapeutic use , DNA-Directed RNA Polymerases/antagonists & inhibitors , Hepacivirus/chemistry , Hepatitis C/enzymology , Viral Nonstructural Proteins/pharmacology , Antiviral Agents/chemical synthesis , Binding Sites , Crystallography, X-Ray , Enzyme Activation , Structure-Activity Relationship , Surface Plasmon Resonance , Viral Nonstructural Proteins/chemistry , Virus Replication/physiology
9.
J Med Chem ; 51(3): 574-80, 2008 Feb 14.
Article in English | MEDLINE | ID: mdl-18181566

ABSTRACT

Promiscuous binders achieve enzyme inhibition using a nonspecific aggregation-type binding mechanism to proteins. These compounds are a source of false-positive hits in biochemical inhibition assays and should be removed from screening hit lists because they are not good candidates to initiate medicinal chemistry programs. We introduce a robust approach to identify these molecules early in the lead generation process using real time surface plasmon resonance based biosensors to observe the behavior of the binding interactions between promiscuous compounds and proteins. Furthermore, the time resolution of the assay reveals a number of distinct mechanisms that promiscuous compounds employ to inhibit enzyme function and indicate that the type of mechanism can vary depending on the protein target. A classification scheme for these compounds is presented that can be used to rapidly characterize the hits from high-throughput screens and eliminate compounds with a nonspecific mechanism of inhibition.


Subject(s)
Enzyme Inhibitors/chemistry , Enzymes/chemistry , Biosensing Techniques , Chemical Phenomena , Chemistry, Physical , Protein Binding , Surface Plasmon Resonance , Surface-Active Agents
10.
J Immunol ; 178(5): 2641-5, 2007 Mar 01.
Article in English | MEDLINE | ID: mdl-17312103

ABSTRACT

IL-1R-associated kinase (IRAK)4 plays a central role in innate and adaptive immunity, and is a crucial component in IL-1/TLR signaling. We have determined the crystal structures of the apo and ligand-bound forms of human IRAK4 kinase domain. These structures reveal several features that provide opportunities for the design of selective IRAK4 inhibitors. The N-terminal lobe of the IRAK4 kinase domain is structurally distinctive due to a loop insertion after an extended N-terminal helix. The gatekeeper residue is a tyrosine, a unique feature of the IRAK family. The IRAK4 structures also provide insights into the regulation of its activity. In the apo structure, two conformations coexist, differing in the relative orientation of the two kinase lobes and the position of helix C. In the presence of an ATP analog only one conformation is observed, indicating that this is the active conformation.


Subject(s)
Interleukin-1 Receptor-Associated Kinases/chemistry , Animals , Crystallography, X-Ray , Humans , Immunity, Innate/immunology , Interleukin-1/immunology , Interleukin-1 Receptor-Associated Kinases/immunology , Protein Structure, Secondary , Protein Structure, Tertiary , Signal Transduction/immunology , Structure-Activity Relationship , Toll-Like Receptors/immunology
11.
J Virol ; 80(12): 6146-54, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16731953

ABSTRACT

Multiple nonnucleoside inhibitor binding sites have been identified within the hepatitis C virus (HCV) polymerase, including in the palm and thumb domains. After a single treatment with a thumb site inhibitor (thiophene-2-carboxylic acid NNI-1), resistant HCV replicon variants emerged that contained mutations at residues Leu419, Met423, and Ile482 in the polymerase thumb domain. Binding studies using wild-type (WT) and mutant enzymes and structure-based modeling showed that the mechanism of resistance is through the reduced binding of the inhibitor to the mutant enzymes. Combined treatment with a thumb- and a palm-binding polymerase inhibitor had a dramatic impact on the number of replicon colonies able to replicate in the presence of both inhibitors. A more exact characterization through molecular cloning showed that 97.7% of replicons contained amino acid substitutions that conferred resistance to either of the inhibitors. Of those, 65% contained simultaneously multiple amino acid substitutions that conferred resistance to both inhibitors. Double-mutant replicons Met414Leu and Met423Thr were predominantly selected, which showed reduced replication capacity compared to the WT replicon. These findings demonstrate the selection of replicon variants dually resistant to two NS5B polymerase inhibitors binding to different sites of the enzyme. Additionally, these findings provide initial insights into the in vitro mutational threshold of the HCV NS5B polymerase and the potential impact of viral fitness on the selection of multiple-resistant mutants.


Subject(s)
Antiviral Agents/pharmacology , Drug Resistance, Viral , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Replicon/genetics , Carboxylic Acids , Drug Therapy, Combination , Genetic Variation , Hepacivirus/drug effects , Hepacivirus/enzymology , Hepacivirus/genetics , Mutation, Missense , Selection, Genetic , Thiophenes/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Virus Replication
12.
J Med Chem ; 49(5): 1562-75, 2006 Mar 09.
Article in English | MEDLINE | ID: mdl-16509574

ABSTRACT

A novel class of highly selective inhibitors of p38 MAP kinase was discovered from high throughput screening. The synthesis and optimization of a series of 5-amino-N-phenyl-1H-pyrazol-4-yl-3-phenylmethanones is described. An X-ray crystal structure of this series bound in the ATP binding pocket of unphosphorylated p38alpha established the presence of a unique hydrogen bond between the exocyclic amine of the inhibitor and threonine 106 which likely contributes to the selectivity for p38. The crystallographic information was used to optimize the potency and physicochemical properties of the series. The incorporation of the 2,3-dihydroxypropoxy moiety on the pyrazole scaffold resulted in a compound with excellent drug-like properties including high oral bioavailability. These efforts identified 63 (RO3201195) as an orally bioavailable and highly selective inhibitor of p38 which was selected for advancement into Phase I clinical trials.


Subject(s)
Anti-Inflammatory Agents/chemical synthesis , Pyrazoles/chemical synthesis , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Adenosine Triphosphate/chemistry , Administration, Oral , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Arthritis, Experimental/drug therapy , Binding Sites , Biological Availability , Cell Line , Crystallography, X-Ray , Dogs , Female , Haplorhini , Humans , Interleukin-1/antagonists & inhibitors , Interleukin-1/biosynthesis , Interleukin-6/antagonists & inhibitors , Interleukin-6/biosynthesis , Models, Molecular , Pyrazoles/chemistry , Pyrazoles/pharmacology , Rats , Rats, Inbred Lew , Stereoisomerism , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/chemistry
13.
Bioorg Med Chem Lett ; 14(18): 4741-5, 2004 Sep 20.
Article in English | MEDLINE | ID: mdl-15324899

ABSTRACT

The introduction of 3-arylmethyl, 3-aryloxy and 3-arylthio moieties into a 6-methylsulfonylindole framework using rational drug design led to potent, selective COX-2 inhibitors having efficacy in a rat carrageenan air pouch model. Incorporation of a conformationally more rigid 3-aroyloxy substituent onto the 6-methylsulfonylindole scaffold led to selective, but considerably less potent COX-2 inhibitors. Variation of the hydrophilicity and size of the indole 2-substituent of 3-arylthio-6-methylsulfonylindole inhibitors led to modulation of the COX-2 human whole blood (HWB) potency and selectivity.


Subject(s)
Cyclooxygenase Inhibitors/chemical synthesis , Cyclooxygenase Inhibitors/pharmacology , Indoles/chemical synthesis , Sulfones/chemical synthesis , Administration, Oral , Animals , Binding Sites , Carrageenan , Cyclooxygenase 2 , Cyclooxygenase 2 Inhibitors , Cyclooxygenase Inhibitors/chemistry , Humans , Indoles/chemistry , Indoles/pharmacology , Inflammation/chemically induced , Inflammation/prevention & control , Membrane Proteins , Models, Molecular , Prostaglandin-Endoperoxide Synthases/blood , Rats , Structure-Activity Relationship , Sulfones/chemistry , Sulfones/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...