Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
JACS Au ; 4(3): 919-929, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38559709

ABSTRACT

Solvation and ion valency effects on selectivity of metal oxyanions at redox-polymer interfaces are explored through in situ spatial-temporally resolved neutron reflectometry combined with large scale ab initio molecular dynamics. The selectivity of ReO4- vs MoO42- for two redox-metallopolymers, poly(vinyl ferrocene) (PVFc) and poly(3-ferrocenylpropyl methacrylamide) (PFPMAm) is evaluated. PVFc has a higher Re/Mo separation factor compared to PFPMAm at 0.6 V vs Ag/AgCl. In situ techniques show that both PVFc and PFPMAm swell in the presence of ReO4- (having higher solvation with PFPMAm), but do not swell in contact with MoO42-. Ab initio molecular simulations suggest that MoO42- maintains a well-defined double solvation shell compared to ReO4-. The more loosely solvated anion (ReO4-) is preferably adsorbed by the more hydrophobic redox polymer (PVFc), and electrostatic cross-linking driven by divalent anionic interactions could impair film swelling. Thus, the in-depth understanding of selectivity mechanisms can accelerate the design of ion-selective redox-mediated separation systems for transition metal recovery and recycling.

2.
J Phys Chem Lett ; 15(16): 4444-4450, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38626466

ABSTRACT

Neutron reflectometry has long been a powerful tool to study the interfacial properties of energy materials. Recently, time-resolved neutron reflectometry has been used to better understand transient phenomena in electrochemical systems. Those measurements often comprise a large number of reflectivity curves acquired over a narrow q range, with each individual curve having lower information content compared to a typical steady-state measurement. In this work, we present an approach that leverages existing reinforcement learning tools to model time-resolved data to extract the time evolution of structure parameters. By mapping the reflectivity curves taken at different times as individual states, we use the Soft Actor-Critic algorithm to optimize the time series of structure parameters that best represent the evolution of an electrochemical system. We show that this approach constitutes an elegant solution to the modeling of time-resolved neutron reflectometry data.

3.
JACS Au ; 3(12): 3333-3344, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38155652

ABSTRACT

Electro-responsive metallopolymers can possess highly specific and tunable ion interactions, and have been explored extensively as electrode materials for ion-selective separations. However, there remains a limited understanding of the role of solvation and polymer-solvent interactions in ion binding and selectivity. The elucidation of ion-solvent-polymer interactions, in combination with the rational design of tailored copolymers, can lead to new pathways for modulating ion selectivity and morphology. Here, we present thermo-electrochemical-responsive copolymer electrodes of N-isopropylacrylamide (NIPAM) and ferrocenylpropyl methacrylamide (FPMAm) with tunable polymer-solvent interactions through copolymer ratio, temperature, and electrochemical potential. As compared to the homopolymer PFPMAm, the P(NIPAM0.9-co-FPMAm0.1) copolymer ingressed 2 orders of magnitude more water molecules per doping ion when electrochemically oxidized, as measured by electrochemical quartz crystal microbalance. P(NIPAM0.9-co-FPMAm0.1) exhibited a unique thermo-electrochemically reversible response and swelled up to 83% after electrochemical oxidation, then deswelled below its original size upon raising the temperature from 20 to 40 °C, as measured through spectroscopic ellipsometry. Reduced P(NIPAM0.9-co-FPMAm0.1) had an inhomogeneous depth profile, with layers of low solvation. In contrast, oxidized P(NIPAM0.9-co-FPMAm0.1) displayed a more uniform and highly solvated depth profile, as measured through neutron reflectometry. P(NIPAM0.9-co-FPMAm0.1) and PFPMAm showed almost a fivefold difference in selectivity for target ions, evidence that polymer hydrophilicity plays a key role in determining ion partitioning between solvent and the polymer interface. Our work points to new macromolecular engineering strategies for tuning ion selectivity in stimuli-responsive materials.

4.
ACS Appl Mater Interfaces ; 14(8): 10898-10906, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35170955

ABSTRACT

We report on the mechanism for hydrogen-induced topotactic phase transitions in perovskite (PV) oxides using La0.7Sr0.3MnO3 as a prototypical example. Hydrogenation starts with lattice expansion confirmed by X-ray diffraction (XRD). The strain- and oxygen-vacancy-mediated electron-phonon coupling in turn produces electronic structure changes that manifest through the appearance of a metal insulator transition accompanied by a sharp increase in resistivity. The ordering of initially randomly distributed oxygen vacancies produces a PV to brownmillerite phase (La0.7Sr0.3MnO2.5) transition. This phase transformation proceeds by the intercalation of oxygen vacancy planes confirmed by in situ XRD and neutron reflectometry (NR) measurements. Despite the prevailing picture that hydrogenation occurs by reaction with lattice oxygen, NR results are not consistent with deuterium (hydrogen) presence in the La0.7Sr0.3MnO3 lattice at steady state. The film can reach a highly oxygen-deficient La0.7Sr0.3MnO2.1 metastable state that is reversible to the as-grown composition simply by annealing in air. Theoretical calculations confirm that hydrogenation-induced oxygen vacancy formation is energetically favorable in La0.7Sr0.3MnO3. The hydrogenation-driven changes of the oxygen sublattice periodicity and the electrical and magnetic properties similar to interface effects induced by oxygen-deficient cap layers persist despite hydrogen not being present in the lattice.

5.
Rev Sci Instrum ; 92(12): 123903, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34972459

ABSTRACT

In this work, we describe the design and development of an in situ neutron reflectometry cell for high temperature investigations of structural changes occurring at the interface between inorganic salts, in their molten state up to 800 °C, and corrosion resistant alloys or other surfaces. In the cell, a molten salt is confined by an annular ring of single crystal sapphire constrained between the sample substrate and a sapphire plate using two gold O-rings, enclosing a liquid salt volume of 20 ml, along with a dynamic cell volume to accommodate expansion of the liquid with heating. As a test case for the cell, we report on an in situ neutron reflectometry measurement of the interface between a eutectic salt mixture of MgCl2-KCl (32:68 molar ratio) and a single crystal sapphire substrate at 450 °C, resulting in the formation of a 60 Å layer having a scattering length density of 1.72 × 10-6 Å-2. While the origin of this layer is uncertain, it is likely to have resulted from the salt reacting with an existing impurity layer on the sapphire substrate.

6.
ACS Appl Mater Interfaces ; 12(8): 10018-10030, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-31984725

ABSTRACT

We use neutron reflectometry to study how the polymeric binder, poly(acrylic acid) (PAA), affects the in situ formation and chemical composition of the solid-electrolyte interphase (SEI) formation on a silicon anode at various states of charge. The reflectivity is correlated with electrochemical quartz crystal microbalance to better understand the viscoelastic effects of the polymer during cycling. The use of model thin films allows for a well-controlled interface between the amorphous Si surface and the PAA layer. If the PAA perfectly coats the Si surface and standard processing conditions are used, the binder will prevent the lithiation of the anode. The PAA suppresses the growth of a new layer formed at early states of discharge (open circuit voltage to 0.8 V vs Li/Li+), protecting the surface of the anode. At 0.15 V, the SEI layer underneath the PAA changes in chemical composition as indicated by an increase in the scattering length density and thickness as the layer incorporates components from the electrolyte, most likely the salt. At lithiated and delithiated states, the SEI layer changes in chemical composition and grows in thickness with delithiation and shrinks during lithiation.

7.
Langmuir ; 36(2): 637-649, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31846580

ABSTRACT

Establishing how water, or the absence of water, affects the structure, dynamics, and function of proteins in contact with inorganic surfaces is critical to developing successful protein immobilization strategies. In the present article, the quantity of water hydrating a monolayer of helical peptides covalently attached to self-assembled monolayers (SAMs) of alkyl thiols on Au was measured using neutron reflectometry (NR). The peptide sequence was composed of repeating LLKK units in which the leucines were aligned to face the SAM. When immersed in water, NR measured 2.7 ± 0.9 water molecules per thiol in the SAM layer and between 75 ± 13 and 111 ± 13 waters around each peptide. The quantity of water in the SAM was nearly twice that measured prior to peptide functionalization, suggesting that the peptide disrupted the structure of the SAM. To identify the location of water molecules around the peptide, we compared our NR data to previously published molecular dynamics simulations of the same peptide on a hydrophobic SAM in water, revealing that 49 ± 5 of 95 ± 8 total nearby water molecules were directly hydrogen-bound to the peptide. Finally, we show that immersing the peptide in water compressed its structure into the SAM surface. Together, these results demonstrate that there is sufficient water to fully hydrate a surface-bound peptide even at hydrophobic interfaces. Given the critical role that water plays in biomolecular structure and function, these results are expected to be informative for a broad array of applications involving proteins at the bio/abio interface.


Subject(s)
Peptides/analysis , Molecular Dynamics Simulation , Neutron Diffraction , Surface Properties , Water/chemistry
8.
Phys Chem Chem Phys ; 21(31): 17356-17365, 2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31355379

ABSTRACT

With the use of in situ neutron reflectometry (NR) we show how the addition of an electronically conductive polymeric binder, PEFM, mediates the solid-electrolyte interphase (SEI) formation and composition on an amorphous Si (a-Si) electrode as a function of the state-of-charge. Upon initial contact with the electrolyte a Li rich, 41 Å thick, layer forms on the surface of the anode below the polymer layer. At 0.8 V (vs. Li/Li+), a distinct SEI layer forms from the incorporation of electrolyte decomposition products in the reaction layer that is organic in nature. In addition, solvent uptake in the PEFM layer occurs resulting in the layer swelling to ∼200 Å. Upon further polarization to 0.4 and 0.15 V (vs. Li/Li+) a thick layer (800 Å) on the surface of the Si is evident where a diffuse interface between the PEFM and SEI occurs resulting in a matrix between the two layers, as the binder has taken up a large amount of electrolyte. The two layers appear to be interchanging solvent molecules from the PEFM to the SEI to the Si surface preventing the lithiation of the a-Si. By 0.05 V (vs. Li/Li+) a Li rich, 72 Å thick, SEI layer condenses on the surface of the anode, and a 121 Å intermixed layer on top of the SEI with LiF and Li-C-O species is present with the rest blended into the electrolyte.

9.
Bioelectrochemistry ; 129: 162-169, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31176253

ABSTRACT

We investigate the interaction of horse heart cytochrome c (cyt c) with hematite nanowire array electrodes by cyclic voltammetry to study the electron transfer between redox active proteins and mineral surfaces. Using this model system, we quantify electron transfer rates between cyt c and hematite under varying electric potential and pH conditions. The results are consistent with two cyt c conformations adsorbed at the hematite surface: the native and a partially unfolded form. The partially unfolded protein maintained redox activity, but at a lower redox potential than the native protein. Adsorption of cyt c allowed direct electron transfer between cyt c and hematite, with an interfacial electron transfer rate, k°ET, of 0.4 s-1 for the native form and 0.55 s-1 for the partially unfolded protein at pH 7.07. At pH 4.66, protein adsorption decreased compared to neutral pH and the fraction of partially unfolded protein increased. Additionally, the diffusion controlled electron transfer rate between hematite and the electron shuttling compound anthraquinone-2,6-disulfonate (AQDS) was determined to be k°ET = 8.0·10-3 cm·s-1 at pH 7.07. Modulation of electron transfer rates as a result of conformational changes by redox active proteins has broad implications for describing chemical transformations at biological-mineral interfaces.


Subject(s)
Cytochromes c/chemistry , Ferric Compounds/chemistry , Nanowires/chemistry , Adsorption , Animals , Electrochemical Techniques , Electrodes , Electron Transport , Horses , Models, Molecular
10.
Langmuir ; 35(16): 5647-5662, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-30919634

ABSTRACT

Self-assembled monolayers (SAMs) of alkyl thiols are frequently used to chemically functionalize gold surfaces for applications throughout materials chemistry, electrochemistry, and biotechnology. Despite this, a detailed understanding of the structure of the SAM-water interface generated from both formation and use of the SAM in an aqueous environment is elusive, and analytical measurements of the structure and chemistry of the SAM-water interface are an ongoing experimental challenge. To address this, we used neutron reflectometry (NR) to measure water association with both hydrophobic and hydrophilic SAMs under both wet and dry conditions. SAMs used for this study were made from hydrophobic decanethiol mixed with hydrophilic 11-azido-1-undecanethiol with compositions of 0-100% of the azide-terminated thiol. All SAMs were formed by conventional solution incubation of a Au substrate immersed in ethanol. Each SAM was characterized by grazing incidence angle reflection-absorption Fourier transfer infrared spectroscopy, contact angle goniometry, and electrochemical methods to confirm it was a completely formed monolayer with evidence of extensive crystalline-like domains. NR measured significant absorption of water into each SAM, ranging from 1.6 to 5.7 water molecules per alkyl thiol, when SAMs were immersed in water. Water infiltration was independent of SAM composition and terminal group hydrophilicity. These results demonstrate that water accesses defects, fluid regions, and heterogeneous domains inherent to even well-formed SAMs.

11.
ACS Appl Mater Interfaces ; 10(38): 32678-32687, 2018 Sep 26.
Article in English | MEDLINE | ID: mdl-30180545

ABSTRACT

Understanding the responses of ionic block copolymers to applied electric fields is crucial when targeting applications in areas such as energy storage, microelectronics, and transducers. This work shows that the identity of counterions in ionic diblock copolymers substantially affects their responses to electric fields, demonstrating the importance of ionic species for materials design. In situ neutron reflectometry measurements revealed that thin films containing imidazolium based cationic diblock copolymers, tetrafluoroborate counteranions led to film contraction under applied electric fields, while bromide counteranions drove expansion under similar field strengths. Coarse-grained molecular dynamics simulations were used to develop a fundamental understanding of these responses, uncovering a nonmonotonic trend in thickness change as a function of field strength. This behavior was attributed to elastic responses of microphase separated diblock copolymer chains resulting from variations in interfacial tension of polymer-polymer interfaces due to the redistribution of counteranions in the presence of electric fields.

12.
ACS Appl Mater Interfaces ; 10(11): 9424-9434, 2018 Mar 21.
Article in English | MEDLINE | ID: mdl-29499109

ABSTRACT

We present a method to prepare shear thickening electrolytes consisting of silica nanoparticles in conventional liquid electrolytes with limited flocculation. These electrolytes rapidly and reversibly stiffen to solidlike behaviors in the presence of external shear or high impact, which is promising for improved lithium ion battery safety, especially in electric vehicles. However, in initial chemistries the silica nanoparticles aggregate and/or sediment in solution over time. Here, we demonstrate steric stabilization of silica colloids in conventional liquid electrolyte via surface-tethered PMMA brushes, synthesized via surface-initiated atom transfer radical polymerization. The PMMA increases the magnitude of the shear thickening response, compared to the uncoated particles, from 0.311 to 2.25 Pa s. Ultrasmall-angle neutron scattering revealed a reduction in aggregation of PMMA-coated silica nanoparticles compared to bare silica nanoparticles in solution under shear and at rest, suggesting good stabilization. Conductivity tests of shear thickening electrolytes (30 wt % solids in electrolyte) at rest were performed with interdigitated electrodes positioned near the meniscus of electrolytes over the course of 24 h to track supernatant formation. Conductivity of electrolytes with bare silica increased from 10.1 to 11.6 mS cm-1 over 24 h due to flocculation. In contrast, conductivity of electrolytes with PMMA-coated silica remained stable at 6.1 mS cm-1 over the same time period, suggesting good colloid stability.

13.
Sci Rep ; 7(1): 6326, 2017 07 24.
Article in English | MEDLINE | ID: mdl-28740163

ABSTRACT

In this work we explore how an electrolyte additive (fluorinated ethylene carbonate - FEC) mediates the thickness and composition of the solid electrolyte interphase formed over a silicon anode in situ as a function of state-of-charge and cycle. We show the FEC condenses on the surface at open circuit voltage then is reduced to C-O containing polymeric species around 0.9 V (vs. Li/Li+). The resulting film is about 50 Å thick. Upon lithiation the SEI thickens to 70 Å and becomes more organic-like. With delithiation the SEI thins by 13 Å and becomes more inorganic in nature, consistent with the formation of LiF. This thickening/thinning is reversible with cycling and shows the SEI is a dynamic structure. We compare the SEI chemistry and thickness to 280 Å thick SEI layers produced without FEC and provide a mechanism for SEI formation using FEC additives.

14.
ACS Appl Mater Interfaces ; 8(31): 20220-9, 2016 Aug 10.
Article in English | MEDLINE | ID: mdl-27403964

ABSTRACT

The realization of controllable morphologies of bulk heterojunctions (BHJ) in organic photovoltaics (OPVs) is one of the key factors enabling high-efficiency devices. We provide new insights into the fundamental mechanisms essential for the optimization of power conversion efficiencies (PCEs) with additive processing to PBDTTT-CF:PC71BM system. We have studied the underlying mechanisms by monitoring the 3D nanostructural modifications in BHJs and correlated the modifications with the optical analysis and theoretical modeling of charge transport. Our results demonstrate profound effects of diiodooctane (DIO) on morphology and charge transport in the active layers. For small amounts of DIO (<3 vol %), DIO promotes the formation of a well-mixed donor-acceptor compact film and augments charge transfer and PCE. In contrast, for large amounts of DIO (>3 vol %), DIO facilitates a loosely packed mixed morphology with large clusters of PC71BM, leading to deterioration in PCE. Theoretical modeling of charge transport reveals that DIO increases the mobility of electrons and holes (the charge carriers) by affecting the energetic disorder and electric field dependence of the mobility. Our findings show the implications of phase separation and carrier transport pathways to achieve optimal device performances.

15.
Langmuir ; 32(22): 5623-8, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27172089

ABSTRACT

The scaling of the thickness, hs, of a densely grafted polymer brush of chain length N and grafting density σ swollen in vapor agrees quantitatively with the scaling reported by Kuhl et al. for densely grafted brushes swollen in liquid. Deep in the brush, next to the substrate, the shape of the segment concentration profile is the same whether the brush is swollen by liquid or by vapor. Differences in the segment concentration profile are manifested primarily in the swollen brush interface with the surrounding fluid. The interface of the polymer brush swollen in vapor is much more abrupt than that of the same brush swollen in liquid. This has implications for the compressibility of the swollen brush surface and for fluctuations at that surface.

16.
Sci Rep ; 5: 13407, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26315070

ABSTRACT

Structural characteristics of the active layers in organic photovoltaic (OPV) devices play a critical role in charge generation, separation and transport. Here we report on morphology and structural control of p-DTS(FBTTh2)2:PC71BM films by means of thermal annealing and 1,8-diiodooctane (DIO) solvent additive processing, and correlate it to the device performance. By combining surface imaging with nanoscale depth-sensitive neutron reflectometry (NR) and X-ray diffraction, three-dimensional morphologies of the films are reconstituted with information extending length scales from nanometers to microns. DIO promotes the formation of a well-mixed donor-acceptor vertical phase morphology with a large population of small p-DTS(FBTTh2)2 nanocrystals arranged in an elongated domain network of the film, thereby enhancing the device performance. In contrast, films without DIO exhibit three-sublayer vertical phase morphology with phase separation in agglomerated domains. Our findings are supported by thermodynamic description based on the Flory-Huggins theory with quantitative evaluation of pairwise interaction parameters that explain the morphological changes resulting from thermal and solvent treatments. Our study reveals that vertical phase morphology of small-molecule based OPVs is significantly different from polymer-based systems. The significant enhancement of morphology and information obtained from theoretical modeling may aid in developing an optimized morphology to enhance device performance for OPVs.

17.
Nanoscale ; 7(38): 15576-83, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26220775

ABSTRACT

Advances in material design and device engineering led to inverted organic solar cells (i-OSCs) with superior power conversion efficiencies (PCEs) compared to their "conventional" counterparts, in addition to the well-known better ambient stability. Here, we report an in-depth morphology study of the i-OSC active and cathode modifying layers, employing a model system with a well-established bulk-heterojunction, PTB7:PC71BM as the active layer and poly-[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) as the cathode surface modifying layer. We have also identified the role of a processing additive, 1,8-diiodooctane (DIO), used in the spin-casting of the active layer to increase PCE. Using various characterization techniques, we demonstrate that the high PCEs of i-OSCs are due to the diffusion of electron-accepting PC71BM into the PFN layer, resulting in improved electron transport. The diffusion occurs when residual solvent molecules in the spun-cast film act as a plasticizer. Addition of DIO to the casting solution results in more PC71BM diffusion and therefore more efficient electron transport. This work provides important insight and guidance to further enhancement of i-OSC performance by materials and interface engineering.

18.
ACS Appl Mater Interfaces ; 6(21): 18569-76, 2014 Nov 12.
Article in English | MEDLINE | ID: mdl-25285852

ABSTRACT

Using neutron reflectometry, we have determined the thickness and scattering length density profile of the electrode-electrolyte interface for the high-voltage cathode LiMn(1.5)Ni(0.5)O4 in situ at open circuit voltage and fully delithiated. Upon exposure to a liquid electrolyte, a thin 3.3 nm Li-rich interface forms due to the ordering of the electrolyte on the cathode surface. This interface changes in composition, as evident by an increase in the scattering length density of the new layer, with charging as the condensed layer evolves from being lithium rich to one containing a much higher concentration of F from the LiPF6 salt. These results show the surface chemistry evolves as a function of the potential.

19.
Chem Commun (Camb) ; 50(23): 3081-4, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24513965

ABSTRACT

We report the first direct measurement of the extent of the spontaneous non-electrochemically driven reaction between a lithium ion battery electrode surface (Si) and a liquid electrolyte (1.2 M LiPF6-3 : 7 wt% ethylene carbonate : dimethyl carbonate). This layer is estimated to be 35 Å thick with a SLD of ∼ 4 × 10(-6) Å(-2) and likely originates from the consumption of the silicon surface.

20.
Nat Commun ; 5: 3180, 2014.
Article in English | MEDLINE | ID: mdl-24458188

ABSTRACT

The attractive optoelectronic properties of conducting polymers depend sensitively upon intra- and inter-polymer chain interactions, and therefore new methods to manipulate these interactions are continually being pursued. Here, we report a study of the isotopic effects of deuterium substitution on the structure, morphology and optoelectronic properties of regioregular poly(3-hexylthiophene)s with an approach that combines the synthesis of deuterated materials, optoelectronic properties measurements, theoretical simulation and neutron scattering. Selective substitutions of deuterium on the backbone or side-chains of poly(3-hexylthiophene)s result in distinct optoelectronic responses in poly(3-hexylthiophene)/[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) photovoltaics. Specifically, the weak non-covalent intermolecular interactions induced by the main-chain deuteration are shown to change the film crystallinity and morphology of the active layer, consequently reducing the short-circuit current. However, side-chain deuteration does not significantly modify the film morphology but causes a decreased electronic coupling, the formation of a charge transfer state, and increased electron-phonon coupling, leading to a remarkable reduction in the open circuit voltage.

SELECTION OF CITATIONS
SEARCH DETAIL
...