Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 159(6)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37551818

ABSTRACT

Spherical harmonics provide a smooth, orthogonal, and symmetry-adapted basis to expand functions on a sphere, and they are used routinely in physical and theoretical chemistry as well as in different fields of science and technology, from geology and atmospheric sciences to signal processing and computer graphics. More recently, they have become a key component of rotationally equivariant models in geometric machine learning, including applications to atomic-scale modeling of molecules and materials. We present an elegant and efficient algorithm for the evaluation of the real-valued spherical harmonics. Our construction features many of the desirable properties of existing schemes and allows us to compute Cartesian derivatives in a numerically stable and computationally efficient manner. To facilitate usage, we implement this algorithm in sphericart, a fast C++ library that also provides C bindings, a Python API, and a PyTorch implementation that includes a GPU kernel.

2.
J Chem Phys ; 157(21): 214801, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36511559

ABSTRACT

We introduce Quantum Machine Learning (QML)-Lightning, a PyTorch package containing graphics processing unit (GPU)-accelerated approximate kernel models, which can yield trained models within seconds. QML-Lightning includes a cost-efficient GPU implementation of FCHL19, which together can provide energy and force predictions with competitive accuracy on a microsecond per atom timescale. Using modern GPU hardware, we report learning curves of energies and forces as well as timings as numerical evidence for select legacy benchmarks from atomistic simulation including QM9, MD-17, and 3BPA.


Subject(s)
Computer Graphics , Machine Learning , Computer Simulation , Algorithms
3.
J Chem Phys ; 154(13): 134113, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33832231

ABSTRACT

Free energies govern the behavior of soft and liquid matter, and improving their predictions could have a large impact on the development of drugs, electrolytes, or homogeneous catalysts. Unfortunately, it is challenging to devise an accurate description of effects governing solvation such as hydrogen-bonding, van der Waals interactions, or conformational sampling. We present a Free energy Machine Learning (FML) model applicable throughout chemical compound space and based on a representation that employs Boltzmann averages to account for an approximated sampling of configurational space. Using the FreeSolv database, FML's out-of-sample prediction errors of experimental hydration free energies decay systematically with training set size, and experimental uncertainty (0.6 kcal/mol) is reached after training on 490 molecules (80% of FreeSolv). Corresponding FML model errors are on par with state-of-the art physics based approaches. To generate the input representation for a new query compound, FML requires approximate and short molecular dynamics runs. We showcase its usefulness through analysis of solvation free energies for 116k organic molecules (all force-field compatible molecules in the QM9 database), identifying the most and least solvated systems and rediscovering quasi-linear structure-property relationships in terms of simple descriptors such as hydrogen-bond donors, number of NH or OH groups, number of oxygen atoms in hydrocarbons, and number of heavy atoms. FML's accuracy is maximal when the temperature used for the molecular dynamics simulation to generate averaged input representation samples in training is the same as for the query compounds. The sampling time for the representation converges rapidly with respect to the prediction error.

4.
J Am Chem Soc ; 140(13): 4517-4521, 2018 04 04.
Article in English | MEDLINE | ID: mdl-29336153

ABSTRACT

The development of thermostable and solvent-tolerant metalloproteins is a long-sought goal for many applications in synthetic biology and biotechnology. In this work, we were able to engineer a highly thermostable and organic solvent-stable metallo variant of the B1 domain of protein G (GB1) with a tetrahedral zinc binding site reminiscent of the one of thermolysin. Promising candidates were designed computationally by applying a protocol based on classical and first-principles molecular dynamics simulations in combination with genetic algorithm optimization. The most promising of the computationally predicted mutants was expressed and structurally characterized and yielded a highly thermostable protein. The experimental results thus confirm the predictive power of the applied computational protein engineering approach for the de novo design of highly stable metalloproteins.


Subject(s)
Algorithms , Metalloproteins/chemistry , Metalloproteins/genetics , Enzyme Stability , Protein Engineering , Temperature
5.
J Phys Chem Lett ; 8(7): 1351-1359, 2017 Apr 06.
Article in English | MEDLINE | ID: mdl-28257210

ABSTRACT

The training of molecular models of quantum mechanical properties based on statistical machine learning requires large data sets which exemplify the map from chemical structure to molecular property. Intelligent a priori selection of training examples is often difficult or impossible to achieve, as prior knowledge may be unavailable. Ordinarily representative selection of training molecules from such data sets is achieved through random sampling. We use genetic algorithms for the optimization of training set composition consisting of tens of thousands of small organic molecules. The resulting machine learning models are considerably more accurate: in the limit of small training sets, mean absolute errors for out-of-sample predictions are reduced by up to ∼75%. We discuss and present optimized training sets consisting of 10 molecular classes for all molecular properties studied. We show that these classes can be used to design improved training sets for the generation of machine learning models of the same properties in similar but unrelated molecular sets.

6.
Struct Dyn ; 4(6): 061510, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29376108

ABSTRACT

Due to their very nature, ultrafast phenomena are often accompanied by the occurrence of nonadiabatic effects. From a theoretical perspective, the treatment of nonadiabatic processes makes it necessary to go beyond the (quasi) static picture provided by the time-independent Schrödinger equation within the Born-Oppenheimer approximation and to find ways to tackle instead the full time-dependent electronic and nuclear quantum problem. In this review, we give an overview of different nonadiabatic processes that manifest themselves in electronic and nuclear dynamics ranging from the nonadiabatic phenomena taking place during tunnel ionization of atoms in strong laser fields to the radiationless relaxation through conical intersections and the nonadiabatic coupling of vibrational modes and discuss the computational approaches that have been developed to describe such phenomena. These methods range from the full solution of the combined nuclear-electronic quantum problem to a hierarchy of semiclassical approaches and even purely classical frameworks. The power of these simulation tools is illustrated by representative applications and the direct confrontation with experimental measurements performed in the National Centre of Competence for Molecular Ultrafast Science and Technology.

SELECTION OF CITATIONS
SEARCH DETAIL
...