Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proteins ; 25(1): 48-78, 1996 May.
Article in English | MEDLINE | ID: mdl-8727319

ABSTRACT

Porphobilinogen deaminase (PBGD) catalyses the polymerization of four molecules of porphobilinogen to form the 1-hydroxymethylbilane, preuroporphyrinogen, a key intermediate in the biosynthesis of tetrapyrroles. The three-dimensional structure of wild-type PBGD from Escherichia coli has been determined by multiple isomorphous replacement and refined to a crystallographic R-factor of 0.188 at 1.76 A resolution. the polypeptide chain of PBGD is folded into three alpha/beta domains. Domains 1 and 2 have a similar overall topology, based on a five-stranded, mixed beta-sheet. These two domains, which are linked by two hinge segments but otherwise make few direct interactions, form an extensive active site cleft at their interface. Domain 3, an open-faced, anti-parallel sheet of three strands, interacts approximately equally with the other two domains. The dipyrromethane cofactor is covalently attached to a cysteine side-chain borne on a flexible loop of domain 3. The cofactor serves as a primer for the assembly of the tetrapyrrole product and is held within the active site cleft by hydrogen-bonds and salt-bridges that are formed between its acetate and propionate side-groups and the polypeptide chain. The structure of a variant of PBGD, in which the methionines have been replaced with selenomethionines, has also been determined. The cofactor, in the native and functional form of the enzyme, adopts a conformation in which the second pyrrole ring (C2) occupies an internal position in the active site cleft. On oxidation, however, this C2 ring of the cofactor adopts a more external position that may correspond approximately to the site of substrate binding and polypyrrole chain elongation. The side-chain of Asp84 hydrogen-bonds the hydrogen atoms of both cofactor pyrrole nitrogens and also potentially the hydrogen atom of the pyrrole nitrogen of the porphobilinogen molecule bound to the proposed substrate binding site. This group has a key catalytic role, possibly in stabilizing the positive charges that develop on the pyrrole nitrogens during the ring-coupling reactions. Possible mechanisms for the processive elongation of the polypyrrole chain involve: accommodation of the elongating chain within the active site cleft, coupled with shifts in the relative positions of domains 1 and 2 to carry the terminal ring into the appropriate position at the catalytic site; or sequential translocation of the elongating polypyrrole chain, attached to the cofactor on domain 3, through the active site cleft by the progressive movement of domain 3 with respect to domains 1 and 2. Other mechanisms are considered although the amino acid sequence comparisons between PBGDs from all species suggest they share the same three-dimensional structure and mechanism of activity.


Subject(s)
Escherichia coli/enzymology , Hydroxymethylbilane Synthase/chemistry , Protein Conformation , Amino Acid Sequence , Binding Sites , Coenzymes/chemistry , Coenzymes/metabolism , Conserved Sequence , Crystallization , Crystallography, X-Ray , Hydrogen Bonding , Hydroxymethylbilane Synthase/metabolism , Models, Molecular , Molecular Sequence Data , Porphobilinogen/chemistry , Porphobilinogen/metabolism , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Alignment , Uroporphyrinogens/biosynthesis
2.
Protein Sci ; 3(10): 1644-50, 1994 Oct.
Article in English | MEDLINE | ID: mdl-7849582

ABSTRACT

Mutations in the human gene for the enzyme porphobilinogen deaminase give rise to an inherited disease of heme biosynthesis, acute intermittent porphyria. Knowledge of the 3-dimensional structure of human porphobilinogen deaminase, based on the structure of the bacterial enzyme, allows correlation of structure with gene organization and leads to an understanding of the relationship between mutations in the gene, structural and functional changes of the enzyme, and the symptoms of the disease. Most mutations occur in exons 10 and 12, often changing amino acids in the active site. Several of these are shown to be involved in binding the primer or substrate; none modifies Asp 84, which is essential for catalytic activity.


Subject(s)
Hydroxymethylbilane Synthase/chemistry , Mutation , Porphyria, Acute Intermittent/genetics , Amino Acid Sequence , Humans , Hydroxymethylbilane Synthase/genetics , Models, Molecular , Molecular Sequence Data , Protein Structure, Secondary
3.
Ciba Found Symp ; 180: 97-104; discussion 105-10, 1994.
Article in English | MEDLINE | ID: mdl-7842864

ABSTRACT

The X-ray crystallographic analysis of porphobilinogen deaminase (hydroxymethylbilane synthase, EC 4.3.1.8) shows the polypeptide chain folded into three domains, (1) N-terminal, (2) central and (3) C-terminal, of approximately equal size. Domains 1 and 2 have a similar overall topology, a modified doubly wound parallel beta-sheet. Domain 3 is an open-faced three-stranded antiparallel beta-sheet, with one face covered by three alpha-helices. The active site is located between domains 1 and 2. The dipyrromethane cofactor linked to cysteine 242 protrudes from domain 3 into the mouth of the cleft. Flexible segments between domains 1 and 2 are thought to have a role in a hinge mechanism, facilitating conformational changes. The cleft is lined with positively charged, highly conserved, arginine residues which form ion pairs with the acidic side chains of the cofactor. Aspartic acid 84 has been identified as a critical catalytic residue both by its proximity to the cofactor pyrrole ring nitrogen and by structural and kinetic studies of the Asp-84-->Glu mutant protein. The active site arginine residues have been altered by site-directed mutagenesis to histidine residues. The mutant proteins have been studied crystallographically in order to reconcile the functional changes in the polymerization reaction with structural changes in the enzyme.


Subject(s)
Escherichia coli/enzymology , Hydroxymethylbilane Synthase/chemistry , Crystallography, X-Ray , Enzyme Activation , Hydroxymethylbilane Synthase/genetics , Molecular Structure , Mutagenesis, Site-Directed , Protein Conformation
4.
Nature ; 359(6390): 33-9, 1992 Sep 03.
Article in English | MEDLINE | ID: mdl-1522882

ABSTRACT

The three-domain structure of porphobilinogen deaminase, a key enzyme in the biosynthetic pathway of tetrapyrroles, has been defined by X-ray analysis at 1.9 A resolution. Two of the domains structurally resemble the transferrins and periplasmic binding proteins. The dipyrromethane cofactor is covalently linked to domain 3 but is bound by extensive salt-bridges and hydrogen-bonds within the cleft between domains 1 and 2, at a position corresponding to the binding sites for small-molecule ligands in the analogous proteins. The X-ray structure and results from site-directed mutagenesis provide evidence for a single catalytic site. Interdomain flexibility may aid elongation of the polypyrrole product in the active-site cleft of the enzyme.


Subject(s)
Hydroxymethylbilane Synthase/chemistry , Binding Sites , Coenzymes/chemistry , Models, Molecular , Molecular Structure , Porphobilinogen/chemistry , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...