Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Int J Cancer ; 151(11): 2043-2054, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35932450

ABSTRACT

Immune checkpoint blockade (ICB) has led to durable clinical responses in multiple cancer types. However, biomarkers that identify which patients are most likely to respond to ICB are not well defined. Many putative biomarkers developed from a small number of samples often fail to maintain their predictive status in larger validation cohorts. We show across multiple human malignancies and syngeneic murine tumor models that neither pretreatment T cell receptor (TCR) clonality nor changes in clonality after ICB correlate with response. Dissection of tumor infiltrating lymphocytes pre- and post-ICB by paired single-cell RNA sequencing and single-cell TCR sequencing reveals conserved and distinct transcriptomic features in expanded TCR clonotypes between anti-PD1 responder and nonresponder murine tumor models. Overall, our results indicate a productive anti-tumor response is agnostic of TCR clonal expansion. Further, we used single-cell transcriptomics to develop a CD8+ T cell specific gene signature for a productive anti-tumor response and show the response signature to be associated with overall survival (OS) on nivolumab monotherapy in CheckMate-067, a phase 3 clinical trial in metastatic melanoma. These results highlight the value of leveraging single-cell assays to dissect heterogeneous tumor and immune subsets and define cell-type specific transcriptomic biomarkers of ICB response.


Subject(s)
Melanoma , Programmed Cell Death 1 Receptor , Animals , CD8-Positive T-Lymphocytes , Humans , Immune Checkpoint Inhibitors , Melanoma/drug therapy , Melanoma/genetics , Mice , Nivolumab/pharmacology , Nivolumab/therapeutic use , Receptors, Antigen, T-Cell/genetics
2.
Front Pharmacol ; 13: 829063, 2022.
Article in English | MEDLINE | ID: mdl-35795558

ABSTRACT

Pharmacokinetic/pharmacodynamic (PK/PD) modeling was performed to quantitatively integrate preclinical pharmacology and toxicology data for determining the therapeutic index (TI) of an interleukin-10 (IL-10) fragment crystallizable (Fc) fusion protein. Mouse Fc fused with mouse IL-10 (mFc-mIL-10) was studied in mice for antitumor efficacy, and the elevation of interleukin-18 (IL-18) was examined as a PD biomarker. The in vivo mFc-mIL-10 EC50 for the IL-18 induction was estimated to be 2.4 nM, similar to the in vitro receptor binding affinity (Kd) of 3.2 nM. The IL-18 induction was further evaluated in cynomolgus monkeys, where the in vivo induction EC50 by a human IL-10 human Fc-fusion protein (hFc-hIL-10) was 0.08 nM vs. 0.3 nM measured as the in vitro Kd. The extent of the IL-18 induction correlated with mouse antitumor efficacy and was used to connect mouse efficacy to that in monkeys. The PD-based efficacious dose projected in monkeys was comparable to the results obtained using a PK-based method in which mouse efficacious exposure was targeted and corrected for affinity differences between the species. Furthermore, PK/PD relationships were developed for anemia and thrombocytopenia in monkeys treated with hFc-hIL-10, with thrombocytopenia predicted to be dose-limiting toxicity. Using quantitative pharmacology and toxicology information obtained through modeling work in the same species, the TI of hFc-hIL-10 in monkeys was determined to be 2.4 (vs. PD-based efficacy) and 1.2-3 (vs. PK-based efficacy), indicating a narrow safety margin. The model-based approaches were proven valuable to the developability assessment of the IL-10 Fc-fusion protein.

3.
Drug Metab Dispos ; 50(7): 898-908, 2022 07.
Article in English | MEDLINE | ID: mdl-35545256

ABSTRACT

Fragment crystallizable (Fc) fusion is commonly used for extending the half-life of biotherapeutics such as cytokines. In this work, we studied the pharmacokinetics of Fc-fused interleukin-10 (IL-10) proteins that exhibited potent antitumor activity in mouse syngeneic tumor models. At pharmacologically active doses of ≥0.1 mg/kg, both mouse Fc-mouse IL-10 and human Fc-human IL-10, constructed as the C terminus of the Fc domain fused with IL-10 via a glycine-serine polypeptide linker, exhibited nonlinear pharmacokinetics after intravenous administration to mice at the doses of 0.05, 0.5, and 5 mg/kg. With a nominal dose ratio of 1:10:100; the ratio of the area under the curve for mouse Fc-mouse IL-10 and human Fc-human IL-10 was 1:181:1830 and 1:75:633, respectively. In contrast, recombinant mouse or human IL-10 proteins exhibited linear pharmacokinetics in mice. Compartmental analysis, using the Michaelis-Menten equation with the in vitro IL-10 receptor alpha binding affinity inputted as the Km, unified the pharmacokinetic data across the dose range. Additionally, nontarget-mediated clearance estimated for fusion proteins was ∼200-fold slower than that for cytokines, causing the manifestation of target-mediated drug disposition (TMDD) in the fusion protein pharmacokinetics. The experimental data generated with a mouse IL-10 receptor alpha-blocking antibody and a human Fc-human IL-10 mutant with a reduced receptor binding affinity showed significant improvements in pharmacokinetics, supporting TMDD as the cause of nonlinearity. Target expression and its effect on pharmacokinetics must be determined when considering using Fc as a half-life extension strategy, and pharmacokinetic evaluations need to be performed at a range of doses covering pharmacological activity. SIGNIFICANCE STATEMENT: Target-mediated drug disposition can manifest to affect the pharmacokinetics of a fragment crystallizable (Fc)-fused cytokine when the nontarget-mediated clearance of the cytokine is decreased due to neonatal Fc receptor-mediated recycling and molecular weight increases that reduce the renal clearance. The phenomenon was demonstrated with interleukin-10 Fc-fusion proteins in mice at pharmacologically active doses. Future drug designs using Fc as a half-life extension approach for cytokines need to consider target expression and its effect on pharmacokinetics at relevant doses.


Subject(s)
Interleukin-10 , Animals , Half-Life , Humans , Interleukin-10/pharmacokinetics , Mice , Receptors, Interleukin-10 , Recombinant Fusion Proteins/pharmacokinetics
4.
J Immunol ; 204(12): 3416-3424, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32341058

ABSTRACT

Radiation therapy is capable of directing adaptive immune responses against tumors by stimulating the release of endogenous adjuvants and tumor-associated Ags. Within the tumor, conventional type 1 dendritic cells (cDC1s) are uniquely positioned to respond to these signals, uptake exogenous tumor Ags, and migrate to the tumor draining lymph node to initiate cross-priming of tumor-reactive cytotoxic CD8+ T cells. In this study, we report that radiation therapy promotes the activation of intratumoral cDC1s in radioimmunogenic murine tumors, and this process fails to occur in poorly radioimmunogenic murine tumors. In poorly radioimmunogenic tumors, the adjuvant polyinosinic-polycytidylic acid overcomes this failure following radiation and successfully drives intratumoral cDC1 maturation, ultimately resulting in durable tumor cures. Depletion studies revealed that both cDC1 and CD8+ T cells are required for tumor regression following combination therapy. We further demonstrate that treatment with radiation and polyinosinic-polycytidylic acid significantly expands the proportion of proliferating CD8+ T cells in the tumor with enhanced cytolytic potential and requires T cell migration from lymph nodes for therapeutic efficacy. Thus, we conclude that lack of endogenous adjuvant release or active suppression following radiation therapy may limit its efficacy in poorly radioimmunogenic tumors, and coadministration of exogenous adjuvants that promote cDC1 maturation and migration can overcome this limitation to improve tumor control following radiation therapy.


Subject(s)
Dendritic Cells/immunology , Neoplasms/immunology , Neoplasms/radiotherapy , Adjuvants, Immunologic/administration & dosage , Animals , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Cell Movement/immunology , Cross-Priming/immunology , Immunotherapy, Adoptive/methods , Lymph Nodes/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Poly I-C/immunology , Radiotherapy/methods
5.
Nat Med ; 24(8): 1178-1191, 2018 08.
Article in English | MEDLINE | ID: mdl-29942093

ABSTRACT

Intratumoral stimulatory dendritic cells (SDCs) play an important role in stimulating cytotoxic T cells and driving immune responses against cancer. Understanding the mechanisms that regulate their abundance in the tumor microenvironment (TME) could unveil new therapeutic opportunities. We find that in human melanoma, SDC abundance is associated with intratumoral expression of the gene encoding the cytokine FLT3LG. FLT3LG is predominantly produced by lymphocytes, notably natural killer (NK) cells in mouse and human tumors. NK cells stably form conjugates with SDCs in the mouse TME, and genetic and cellular ablation of NK cells in mice demonstrates their importance in positively regulating SDC abundance in tumor through production of FLT3L. Although anti-PD-1 'checkpoint' immunotherapy for cancer largely targets T cells, we find that NK cell frequency correlates with protective SDCs in human cancers, with patient responsiveness to anti-PD-1 immunotherapy, and with increased overall survival. Our studies reveal that innate immune SDCs and NK cells cluster together as an excellent prognostic tool for T cell-directed immunotherapy and that these innate cells are necessary for enhanced T cell tumor responses, suggesting this axis as a target for new therapies.


Subject(s)
Dendritic Cells/immunology , Immunotherapy , Killer Cells, Natural/immunology , Tumor Microenvironment/immunology , Antigens, Surface/metabolism , Cell Communication , Cell Survival , Humans , Lymphocytes/metabolism , Melanoma/immunology , Melanoma/pathology , Membrane Proteins/metabolism , Survival Analysis , Thrombomodulin
6.
J Clin Invest ; 126(12): 4417-4429, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27775547

ABSTRACT

The rising success of cancer immunotherapy has produced immense interest in defining the clinical contexts that may benefit from this therapeutic approach. To this end, there is a need to ascertain how the therapeutic modulation of intrinsic cancer cell programs influences the anticancer immune response. For example, the role of autophagy as a tumor cell survival and metabolic fitness pathway is being therapeutically targeted in ongoing clinical trials that combine cancer therapies with antimalarial drugs for the treatment of a broad spectrum of cancers, many of which will likely benefit from immunotherapy. However, our current understanding of the interplay between autophagy and the immune response remains incomplete. Here, we have evaluated how autophagy inhibition impacts the antitumor immune response in immune-competent mouse models of melanoma and mammary cancer. We observed equivalent levels of T cell infiltration and function within autophagy-competent and -deficient tumors, even upon treatment with the anthracycline chemotherapeutic doxorubicin. Similarly, we found equivalent T cell responses upon systemic treatment of tumor-bearing mice with antimalarial drugs. Our findings demonstrate that antitumor adaptive immunity is not adversely impaired by autophagy inhibition in these models, allowing for the future possibility of combining autophagy inhibitors with immunotherapy in certain clinical contexts.


Subject(s)
Antimalarials/pharmacology , Autophagy/drug effects , Immunity, Cellular/drug effects , Mammary Neoplasms, Experimental , Melanoma , T-Lymphocytes/immunology , Animals , Autophagy/immunology , Cell Line, Tumor , Female , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/immunology , Mammary Neoplasms, Experimental/pathology , Melanoma/drug therapy , Melanoma/immunology , Melanoma/pathology , Mice , Mice, Transgenic , T-Lymphocytes/pathology
7.
Cancer Cell ; 30(2): 324-336, 2016 08 08.
Article in English | MEDLINE | ID: mdl-27424807

ABSTRACT

Intratumoral dendritic cells (DC) bearing CD103 in mice or CD141 in humans drive intratumoral CD8(+) T cell activation. Using multiple strategies, we identified a critical role for these DC in trafficking tumor antigen to lymph nodes (LN), resulting in both direct CD8(+) T cell stimulation and antigen hand-off to resident myeloid cells. These effects all required CCR7. Live imaging demonstrated direct presentation to T cells in LN, and CCR7 loss specifically in these cells resulted in defective LN T cell priming and increased tumor outgrowth. CCR7 expression levels in human tumors correlate with signatures of CD141(+) DC, intratumoral T cells, and better clinical outcomes. This work identifies an ongoing pathway to T cell priming, which should be harnessed for tumor therapies.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Melanoma/immunology , Receptors, CCR7/immunology , Animals , Antigen Presentation , Antigens, CD/immunology , Antigens, Neoplasm/immunology , Antigens, Surface/immunology , Cell Movement/immunology , Dendritic Cells/pathology , Humans , Integrin alpha Chains/immunology , Lymph Nodes/immunology , Lymph Nodes/pathology , Melanoma/pathology , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Thrombomodulin
8.
Cancer Res ; 76(6): 1416-28, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26719528

ABSTRACT

Immunosurveillance constitutes the first step of cancer immunoediting in which developing malignant lesions are eliminated by antitumorigenic immune cells. However, the mechanisms by which neoplastic cells induce an immunosuppressive state to evade the immune response are still unclear. The transcription factor STAT3 has been implicated in breast carcinogenesis and tumor immunosuppression in advanced disease, but its involvement in early disease development has not been established. Here, we genetically ablated Stat3 in the tumor epithelia of the inducible PyVmT mammary tumor model and found that Stat3-deficient mice recapitulated the three phases of immunoediting: elimination, equilibrium, and escape. Pathologic analyses revealed that Stat3-deficient mice initially formed hyperplastic and early adenoma-like lesions that later completely regressed, thereby preventing the emergence of mammary tumors in the majority of animals. Furthermore, tumor regression was correlated with massive immune infiltration into the Stat3-deficient lesions, leading to their elimination. In a minority of animals, focal, nonmetastatic Stat3-deficient mammary tumors escaped immune surveillance after a long latency or equilibrium period. Taken together, our findings suggest that tumor epithelial expression of Stat3 plays a critical role in promoting an immunosuppressive tumor microenvironment during breast tumor initiation and progression, and prompt further investigation of Stat3-inhibitory strategies that may reactivate the immunosurveillance program.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Immune Tolerance/physiology , Immunologic Surveillance/physiology , Neoplasm Metastasis/pathology , STAT3 Transcription Factor/metabolism , Tumor Microenvironment/physiology , Animals , Carcinogenesis/metabolism , Carcinogenesis/pathology , Female , Mammary Neoplasms, Animal/metabolism , Mammary Neoplasms, Animal/pathology , Mice
9.
Cancer Immunol Res ; 3(4): 313-9, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25847968

ABSTRACT

Myeloid cells are the most prominent among cells capable of presenting tumor-derived antigens to T cells and thereby maintaining the latter in an activated state. Myeloid populations of the tumor microenvironment prominently include monocytes and neutrophils (sometimes loosely grouped as myeloid-derived suppressor cells), macrophages, and dendritic cells. Although intratumoral myeloid populations, as a whole, have long been considered nonstimulatory or suppressive, it has only recently been appreciated that not all tumor-infiltrating myeloid cells are made equal. Because of advances in high-dimensional flow cytometry as well as more robust transcriptional profiling, we now also understand that the subsets of the tumor-myeloid compartment are far more diverse and notably even contain a rare population of stimulatory dendritic cells. As all of these myeloid populations represent major T-cell-interacting partners for incoming tumor-reactive cytotoxic T lymphocytes, understanding the distinctions in their lineage and function reveals and guides numerous therapeutic avenues targeting these antigen-presenting cells. In this Cancer Immunology at the Crossroads overview, we review the recent progress in this rapidly evolving field and advance the hypothesis that the antigen-presenting compartment within tumor microenvironments may contain significant numbers of potent allies to be leveraged for immune-based tumor clearance.


Subject(s)
Myeloid Cells/immunology , Neoplasms/immunology , Antigen Presentation/immunology , Antigen-Presenting Cells/immunology , Antigens, Neoplasm/immunology , Cytokines/immunology , Humans , Lymphocyte Activation/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasms/therapy , T-Lymphocytes, Cytotoxic/immunology , Tumor Microenvironment/immunology
10.
Cancer Cell ; 26(5): 638-52, 2014 Nov 10.
Article in English | MEDLINE | ID: mdl-25446897

ABSTRACT

It is well understood that antigen-presenting cells (APCs) within tumors typically do not maintain cytotoxic T cell (CTL) function, despite engaging them. Across multiple mouse tumor models and human tumor biopsies, we have delineated the intratumoral dendritic cell (DC) populations as distinct from macrophage populations. Within these, CD103(+) DCs are extremely sparse and yet remarkably capable CTL stimulators. These are uniquely dependent on IRF8, Zbtb46, and Batf3 transcription factors and are generated by GM-CSF and FLT3L cytokines. Regressing tumors have higher proportions of these cells, T-cell-dependent immune clearance relies on them, and abundance of their transcripts in human tumors correlates with clinical outcome. This cell type presents opportunities for prognostic and therapeutic approaches across multiple cancer types.


Subject(s)
Dendritic Cells/immunology , Mammary Neoplasms, Experimental/immunology , T-Lymphocytes/immunology , Animals , Antigens, CD/metabolism , Coculture Techniques , Dendritic Cells/metabolism , Female , Humans , Immunotherapy, Adoptive , Macrophages/metabolism , Mammary Neoplasms, Experimental/pathology , Mammary Neoplasms, Experimental/therapy , Mice, Inbred C57BL , Myeloid Cells/immunology , Myeloid Cells/metabolism , T-Lymphocytes/metabolism , Tumor Cells, Cultured , Tumor Microenvironment
12.
Plant Physiol ; 163(2): 696-712, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23946353

ABSTRACT

Tetraspanins are evolutionary conserved transmembrane proteins present in all multicellular organisms. In animals, they are known to act as central organizers of membrane complexes and thought to facilitate diverse biological processes, such as cell proliferation, movement, adhesion, and fusion. The genome of Arabidopsis (Arabidopsis thaliana) encodes 17 members of the tetraspanin family; however, little is known about their functions in plant development. Here, we analyzed their phylogeny, protein topology, and domain structure and surveyed their expression and localization patterns in reproductive tissues. We show that, despite their low sequence identity with metazoan tetraspanins, plant tetraspanins display the typical structural topology and most signature features of tetraspanins in other multicellular organisms. Arabidopsis tetraspanins are expressed in diverse tissue domains or cell types in reproductive tissues, and some accumulate at the highest levels in response to pollination in the transmitting tract and stigma, male and female gametophytes and gametes. Arabidopsis tetraspanins are preferentially targeted to the plasma membrane, and they variously associate with specialized membrane domains, in a polarized fashion, to intercellular contacts or plasmodesmata. A membrane-based yeast (Saccharomyces cerevisiae) two-hybrid system established that tetraspanins can physically interact, forming homo- and heterodimer complexes. These results, together with a likely genetic redundancy, suggest that, similar to their metazoan counterparts, plant tetraspanins might be involved in facilitating intercellular communication, whose functions might be determined by the composition of tetraspanin complexes and their binding partners at the cell surface of specific cell types.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/metabolism , Organ Specificity , Protein Multimerization , Saccharomyces cerevisiae/metabolism , Tetraspanins/metabolism , Amino Acid Sequence , Animals , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Cell Membrane/metabolism , Gene Expression Regulation, Plant , Germ Cells, Plant/cytology , Germ Cells, Plant/metabolism , Green Fluorescent Proteins/metabolism , Molecular Sequence Data , Phylogeny , Protein Transport , Reproduction/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Alignment , Subcellular Fractions/metabolism , Tetraspanins/chemistry , Tetraspanins/genetics
13.
PLoS One ; 7(9): e44954, 2012.
Article in English | MEDLINE | ID: mdl-23028701

ABSTRACT

XMRV, or xenotropic murine leukemia virus (MLV)-related virus, is a novel gammaretrovirus originally identified in studies that analyzed tissue from prostate cancer patients in 2006 and blood from patients with chronic fatigue syndrome (CFS) in 2009. However, a large number of subsequent studies failed to confirm a link between XMRV infection and CFS or prostate cancer. On the contrary, recent evidence indicates that XMRV is a contaminant originating from the recombination of two mouse endogenous retroviruses during passaging of a prostate tumor xenograft (CWR22) in mice, generating laboratory-derived cell lines that are XMRV-infected. To confirm or refute an association between XMRV and prostate cancer, we analyzed prostate cancer tissues and plasma from a prospectively collected cohort of 39 patients as well as archival RNA and prostate tissue from the original 2006 study. Despite comprehensive microarray, PCR, FISH, and serological testing, XMRV was not detected in any of the newly collected samples or in archival tissue, although archival RNA remained XMRV-positive. Notably, archival VP62 prostate tissue, from which the prototype XMRV strain was derived, tested negative for XMRV on re-analysis. Analysis of viral genomic and human mitochondrial sequences revealed that all previously characterized XMRV strains are identical and that the archival RNA had been contaminated by an XMRV-infected laboratory cell line. These findings reveal no association between XMRV and prostate cancer, and underscore the conclusion that XMRV is not a naturally acquired human infection.


Subject(s)
Prostatic Neoplasms/virology , Specimen Handling/methods , Xenotropic murine leukemia virus-related virus/isolation & purification , Animals , Cell Line, Tumor , Cohort Studies , Databases, Factual , Genome, Viral/genetics , Humans , Male , Mice , Mitochondria/genetics , Polymorphism, Single Nucleotide , Prospective Studies , Prostatectomy , Prostatic Neoplasms/blood , Prostatic Neoplasms/pathology , Prostatic Neoplasms/surgery , RNA/genetics , Xenotropic murine leukemia virus-related virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...