Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Ecol Lett ; 27(6): e14442, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38844373

ABSTRACT

Highly diverse and abundant organisms coexist in soils. However, the contribution of biotic interactions between soil organisms to microbial community assembly remains to be explored. Here, we assess the extent to which soil fauna can shape microbial community assembly using an exclusion experiment in a grassland field to sort soil biota based on body size. After 1 year, the exclusion of larger fauna favoured phagotrophic protists, with increases up to 32% in their proportion compared to the no-mesh treatment. In contrast, members of the bacterial community and to a lesser extent of the fungal community were negatively impacted. Shifts in bacterial but not in fungal communities were best explained by the response of the protistan community to exclusion. Our findings provide empirical evidence of top-down control on the soil microbial communities and underline the importance of integrating higher trophic levels for a better understanding of the soil microbiome assembly.


Subject(s)
Bacteria , Fungi , Grassland , Microbiota , Soil Microbiology , Fungi/physiology , Animals , Eukaryota/physiology , Soil/chemistry , Body Size
2.
J Hazard Mater ; 470: 134231, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38598881

ABSTRACT

Fungicides are used worldwide to improve crop yields, but they can affect non-target soil microorganisms which are essential for ecosystem functioning. Microorganisms form complex communities characterized by a myriad of interspecies interactions, yet it remains unclear to what extent non-target microorganisms are indirectly affected by fungicides through biotic interactions with sensitive taxa. To quantify such indirect effects, we fragmented a soil microbial community by filtration to alter biotic interactions and compared the effect of the fungicide hymexazol between fractions in soil microcosms. We postulated that OTUs which are indirectly affected would exhibit a different response to the fungicide across the fragmented communities. We found that hymexazol primarily affected bacterial and fungal communities through indirect effects, which were responsible for more than 75% of the shifts in relative abundance of the dominant microbial OTUs after exposure to an agronomic dose of hymexazol. However, these indirect effects decreased for the bacterial community when hymexazol doses increased. Our results also suggest that N-cycling processes such as ammonia oxidation can be impacted indirectly by fungicide application. This work sheds light on the indirect impact of fungicide exposure on soil microorganisms through biotic interactions, which underscores the need for higher-tier risk assessment. ENVIRONMENTAL IMPLICATION: In this study, we used a novel approach based on the fragmentation of the soil microbial community to determine to which extent fungicide application could indirectly affect fungi and bacteria through biotic interactions. To assess off-target effects of fungicide on soil microorganisms, we selected hymexazol, which is used worldwide to control a variety of fungal plant pathogens, and exposed arable soil to the recommended field rate, as well as to higher rates. Our findings show that at least 75% of hymexazol-impacted microbial OTUs were indirectly affected, therefore emphasizing the importance of tiered risk assessment.


Subject(s)
Bacteria , Fungi , Fungicides, Industrial , Soil Microbiology , Fungicides, Industrial/toxicity , Fungicides, Industrial/pharmacology , Fungi/drug effects , Fungi/metabolism , Bacteria/drug effects , Bacteria/metabolism , Soil Pollutants/toxicity , Microbiota/drug effects , Microbial Interactions/drug effects
3.
Environ Microbiome ; 19(1): 18, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504378

ABSTRACT

BACKGROUND: Microbial communities are of tremendous importance for ecosystem functioning and yet we know little about the ecological processes driving the assembly of these communities in the environment. Here, we used an unprecedented experimental approach based on the manipulation of physical distance between neighboring cells during soil colonization to determine the role of bacterial interactions in soil community assembly. We hypothesized that experimentally manipulating the physical distance between bacterial cells will modify the interaction strengths leading to differences in microbial community composition, with increasing distance between neighbors favoring poor competitors. RESULTS: We found significant differences in both bacterial community diversity, composition and co-occurrence networks after soil colonization that were related to physical distancing. We show that reducing distances between cells resulted in a loss of bacterial diversity, with at least 41% of the dominant OTUs being significantly affected by physical distancing. Our results suggest that physical distancing may differentially modulate competitiveness between neighboring species depending on the taxa present in the community. The mixing of communities that assembled at high and low cell densities did not reveal any "home field advantage" during coalescence. This confirms that the observed differences in competitiveness were due to biotic rather than abiotic filtering. CONCLUSIONS: Our study demonstrates that the competitiveness of bacteria strongly depends on cell density and community membership, therefore highlighting the fundamental role of microbial interactions in the assembly of soil communities.

4.
Microbiome ; 11(1): 42, 2023 03 04.
Article in English | MEDLINE | ID: mdl-36871037

ABSTRACT

BACKGROUND: Microbes typically live in communities where individuals can interact with each other in numerous ways. However, knowledge on the importance of these interactions is limited and derives mainly from studies using a limited number of species grown in coculture. Here, we manipulated soil microbial communities to assess the contribution of interactions between microorganisms for assembly of the soil microbiome. RESULTS: By combining experimental removal (taxa depletion in the community) and coalescence (mixing of manipulated and control communities) approaches, we demonstrated that interactions between microorganisms can play a key role in determining their fitness during soil recolonization. The coalescence approach not only revealed the importance of density-dependent interactions in microbial community assembly but also allowed to restore partly or fully community diversity and soil functions. Microbial community manipulation resulted in shifts in both inorganic nitrogen pools and soil pH, which were related to the proportion of ammonia-oxidizing bacteria. CONCLUSIONS: Our work provides new insights into the understanding of the importance of microbial interactions in soil. Our top-down approach combining removal and coalescence manipulation also allowed linking community structure and ecosystem functions. Furthermore, these results highlight the potential of manipulating microbial communities for the restoration of soil ecosystems. Video Abstract.


Subject(s)
Betaproteobacteria , Microbiota , Humans , Microbial Interactions , Coculture Techniques , Soil
5.
Environ Microbiome ; 17(1): 1, 2022 Jan 06.
Article in English | MEDLINE | ID: mdl-34991714

ABSTRACT

BACKGROUND: Soil microbial communities are major drivers of cycling of soil nutrients that sustain plant growth and productivity. Yet, a holistic understanding of the impact of land-use intensification on the soil microbiome is still poorly understood. Here, we used a field experiment to investigate the long-term consequences of changes in land-use intensity based on cropping frequency (continuous cropping, alternating cropping with a temporary grassland, perennial grassland) on bacterial, protist and fungal communities as well as on their co-occurrence networks. RESULTS: We showed that land use has a major impact on the structure and composition of bacterial, protist and fungal communities. Grassland and arable cropping differed markedly with many taxa differentiating between both land use types. The smallest differences in the microbiome were observed between temporary grassland and continuous cropping, which suggests lasting effects of the cropping system preceding the temporary grasslands. Land-use intensity also affected the bacterial co-occurrence networks with increased complexity in the perennial grassland comparing to the other land-use systems. Similarly, co-occurrence networks within microbial groups showed a higher connectivity in the perennial grasslands. Protists, particularly Rhizaria, dominated in soil microbial associations, as they showed a higher number of connections than bacteria and fungi in all land uses. CONCLUSIONS: Our findings provide evidence of legacy effects of prior land use on the composition of the soil microbiome. Whatever the land use, network analyses highlighted the importance of protists as a key element of the soil microbiome that should be considered in future work. Altogether, this work provides a holistic perspective of the differential responses of various microbial groups and of their associations to agricultural intensification.

6.
Microb Ecol ; 84(1): 106-121, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34405251

ABSTRACT

The rhizosphere is a dynamic and complex interface between plant roots and microorganisms. Owing to exudates, a web of interactions establishes among the microbial members of this micro-environment. The present study explored the impact of a bacterial consortium (Azotobacter chroococcum, Bacillus megaterium and Pseudomonas fluorescens, ABP), on the fate of a human pathogen, Listeria monocytogenes EGD-e, in soil and in the rhizospheres of Cajanus cajan and Festuca arundinacea, in addition to its plant growth promoting effect. The study further assessed the impact these bioinoculants exert on the autochthonous soil bacterial communities. Experiments in sterilised soil inoculated with bioinoculants and L. monocytogenes revealed the inhibition of L. monocytogenes by approximately 80-fold compared to that without the consortium. Subsequently, experiments were conducted in non-sterile soil microcosms planted with C. cajan and F. arundinacea, and in bulk soil. The consortium led to a significant increase in plant growth in both plants and prevented growth of L. monocytogenes. However, the presence of resident soil bacterial communities overshadowed this inhibitory effect, and a sharp decline in L. monocytogenes populations (5-6 log reduction) was recorded under non-sterile soil conditions. A shift in the soil resident bacterial communities was observed upon amendment with the bioinoculants. A significant increase of potential Plant Growth Promoting Rhizobacteria (PGPR) and biocontrol agents was observed, while the abundance of potential phytopathogens dropped. The present study opens up new avenues for the application of such a consortium given their dual benefits of plant growth promotion and restricting phytopathogens as well as human pathogen.


Subject(s)
Cajanus , Festuca , Listeria monocytogenes , Cajanus/microbiology , Humans , Plant Roots/microbiology , Plants , Rhizosphere , Soil , Soil Microbiology
7.
ISME J ; 16(1): 296-306, 2022 01.
Article in English | MEDLINE | ID: mdl-34321619

ABSTRACT

Microbial communities play important roles in all ecosystems and yet a comprehensive understanding of the ecological processes governing the assembly of these communities is missing. To address the role of biotic interactions between microorganisms in assembly and for functioning of the soil microbiota, we used a top-down manipulation approach based on the removal of various populations in a natural soil microbial community. We hypothesized that removal of certain microbial groups will strongly affect the relative fitness of many others, therefore unraveling the contribution of biotic interactions in shaping the soil microbiome. Here we show that 39% of the dominant bacterial taxa across treatments were subjected to competitive interactions during soil recolonization, highlighting the importance of biotic interactions in the assembly of microbial communities in soil. Moreover, our approach allowed the identification of microbial community assembly rule as exemplified by the competitive exclusion between members of Bacillales and Proteobacteriales. Modified biotic interactions resulted in greater changes in activities related to N- than to C-cycling. Our approach can provide a new and promising avenue to study microbial interactions in complex ecosystems as well as the links between microbial community composition and ecosystem function.


Subject(s)
Microbiota , Soil , Bacteria/genetics , Microbial Interactions , Soil Microbiology
8.
Ecol Lett ; 25(1): 189-201, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34749426

ABSTRACT

Artificial selection of microbiota opens new avenues for improving plants. However, reported results lack consistency. We hypothesised that the success in artificial selection of microbiota depends on the stabilisation of community structure. In a ten-generation experiment involving 1,800 plants, we selected rhizosphere microbiota of Brachypodium distachyon associated with high or low leaf greenness, a proxy of plant performance. The microbiota structure showed strong fluctuations during an initial transitory phase, with no detectable leaf greenness heritability. After five generations, the microbiota structure stabilised, concomitantly with heritability in leaf greenness. Selection, initially ineffective, did successfully alter the selected property as intended, especially for high selection. We show a remarkable correlation between the variability in plant traits and selected microbiota structures, revealing two distinct sub-communities associated with high or low leaf greenness, whose abundance was significantly steered by directional selection. Understanding microbiota structure stabilisation will improve the reliability of artificial microbiota selection.


Subject(s)
Microbiota , Rhizosphere , Phenotype , Reproducibility of Results , Soil Microbiology
9.
Front Microbiol ; 12: 822487, 2021.
Article in English | MEDLINE | ID: mdl-35330614

ABSTRACT

Soil compaction caused by highly mechanized agriculture can constrain soil microbial diversity and functioning. Physical pressure on the soil decreases macropores and thereby limits oxygen diffusion. The associated shift from aerobic to anaerobic conditions can reduce nitrification and promote denitrification processes, leading to nitrogen (N) losses and N depletion that affect plant productivity. High soil moisture content during trafficking can exacerbate the negative effects of soil compaction. However, the extent to which soil moisture amplifies the effects of compaction on the soil microbiome and its control over N cycling is not well understood. Using a controlled greenhouse experiment with two different crops (pea and wheat), we compared the effects of compaction at three different soil moisture levels on soil physicochemical properties, microbial diversity, and the abundance of specific N species and quantification of associated microbial functional groups in the N cycle. Soil compaction increased bulk density from 15% (light compaction) to 25% (severe compaction). Compaction delayed germination in both crops and reduced yield by up to 60% for pea and 40% for wheat. Compaction further induced crop-specific shifts in microbial community structures. After compaction, the relative abundance of denitrifiers increased along with increased nitrate (NO3 -) consumption and elevated nitrous oxide (N2O) concentrations in the soil pores. Conversely, the relative abundance of nitrifiers remained stable under compaction, but potentially decelerated nitrification rates, resulting in ammonium (NH4 +) accumulation in the soil. This study showed that soil compaction effects are proportional to the initial soil moisture content, which could serve as a good indicator of compaction severity on agricultural fields. However, the impact of soil compaction on crop performance and on microbial communities and functions associated with the N cycle were not necessarily aligned. These findings demonstrate that not only the soil physical properties but also various biological indicators need to be considered in order to provide more precise recommendations for developing sustainable farming systems.

10.
Sci Rep ; 10(1): 12234, 2020 07 22.
Article in English | MEDLINE | ID: mdl-32699344

ABSTRACT

Despite the large morphological and physiological changes that plants have undergone through domestication, little is known about their impact on their microbiome. Here we characterized rhizospheric bacterial and fungal communities as well as the abundance of N-cycling microbial guilds across thirty-nine accessions of tetraploid wheat, Triticum turgidum, from four domestication groups ranging from the wild subspecies to the semi dwarf elite cultivars. We identified several microbial phylotypes displaying significant variation in their relative abundance depending on the wheat domestication group with a stronger impact of domestication on fungi. The relative abundance of potential fungal plant pathogens belonging to the Sordariomycetes class decreased in domesticated compared to wild emmer while the opposite was found for members of the Glomeromycetes, which are obligate plant symbionts. The depletion of nitrifiers and of arbuscular mycorrhizal fungi in elite wheat cultivars compared to primitive domesticated forms suggests that the Green Revolution has decreased the coupling between plant and rhizosphere microbes that are potentially important for plant nutrient availability. Both plant diameter and fine root percentage exhibited the highest number of associations with microbial taxa, highlighting their putative role in shaping the rhizosphere microbiota during domestication. Aside from domestication, significant variation of bacterial and fungal community composition was found among accessions within each domestication group. In particular, the relative abundances of Ophiostomataceae and of Rhizobiales were strongly dependent on the host accession, with heritability estimates of ~ 27% and ~ 25%, indicating that there might be room for genetic improvement via introgression of ancestral plant rhizosphere-beneficial microbe associations.


Subject(s)
Bacteria/genetics , Domestication , Microbiota/genetics , Mycobiome/genetics , Mycorrhizae/genetics , Plant Roots/microbiology , Triticum/microbiology , Genotype , Phenotype , Rhizosphere , Soil Microbiology , Tetraploidy
11.
Front Microbiol ; 11: 927, 2020.
Article in English | MEDLINE | ID: mdl-32547502

ABSTRACT

Microbial communities are continuously exposed to the arrival of alien species. In complex environments such as soil, the success of invasion depends on the characteristics of the habitat, especially the diversity and structure of the residing bacterial communities. While most data available on microbial invasion relies on experiments run under constant conditions, the fate of invading species when the habitat faces disturbances has not yet been addressed. Here, we designed experiments to assess the consequences of habitat disturbance on the success of ongoing microbial invasion. We investigated (i) if disturbance-induced alterations in resident microbial communities could mitigate or facilitate invasion of Listeria monocytogenes, (ii) if disturbance itself could either improve or reduce the invader's fitness and (iii) if the invading species alters the structure of indigenous microbial communities. Our data show that environmental disturbances affect invasion patterns of L. monocytogenes in soils. Intriguingly, successful invasion was recorded in a regimen of disturbances that triggered small changes in microbial community structure while maintaining high bacterial diversity. On the opposite, dramatic decline of the invader was recorded when disturbance resulted in emergence of specific communities albeit concomitant with a diversity loss. This suggests that community composition is more important than its diversity when it comes to prevent the establishment of an invading species. Finally, shifts in bacterial communities during the disturbance event were strengthened by the presence of the invader indicating a major impact of invasion on microbial diversity when the habitat faces disturbance.

12.
Sensors (Basel) ; 20(7)2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32283747

ABSTRACT

Architectural heritage is usually built with masonry structures, which present problems under lateral in-plane loading conditions, such as wind pressure or earthquakes. In order to improve the shear behavior of masonry, the use of a fabric-reinforced cementitious matrix (FRCM) has become an interesting solution because of its synergy of mechanical properties and compatibility with masonry substrates. For a proper structural evaluation, the mechanical behavior of reinforced masonry and the FRCM itself needs to be characterized. Hence, a numerical model to evaluate the FRCM reinforcement requires some mechanical parameters that may be difficult to obtain. In this sense, the shear behavior of masonry can be evaluated by means of diagonal tension tests on small specimens (71 × 71 cm). In this work, a digital image correlation (DIC) monitoring system was used to control displacements and cracking patterns of masonry specimens under shear stress (induced by diagonal tension with FRCM layers) applied to one or two sides. In addition, the mechanical behavior of FRCM coupons under uniaxial tensile tests was also registered with DIC. The displacement measurements obtained by DIC were validated with the measurements registered with LVDT. Unlike LVDT-based techniques, DIC monitoring allowed us to measure deformations in masonry during the full test, detecting crack initiation even before it was visible to the eye.

13.
Front Microbiol ; 11: 610298, 2020.
Article in English | MEDLINE | ID: mdl-33505377

ABSTRACT

Maize cultivators often use ß-triketone herbicides to prevent the growth of weeds in their fields. These herbicides target the 4-HPPD enzyme of dicotyledons. This enzyme, encoded by the hppd gene, is widespread among all living organisms including soil bacteria, which are considered as "non-target organisms" by the legislation. Within the framework of the pesticide registration process, the ecotoxicological impact of herbicides on soil microorganisms is solely based on carbon and nitrogen mineralization tests. In this study, we used more extensive approaches to assess with a lab-to-field experiment the risk of ß-triketone on the abundance and the diversity of both total and hppd soil bacterial communities. Soil microcosms were exposed, under lab conditions, to 1× or 10× the recommended dose of sulcotrione or its commercial product, Decano®. Whatever the treatment applied, sulcotrione was fully dissipated from soil after 42 days post-treatment. The abundance and the diversity of both the total and the hppd bacterial communities were not affected by the herbicide treatments all along the experiment. Same measurements were led in real agronomical conditions, on three different fields located in the same area cropped with maize: one not exposed to any plant protection products, another one exposed to a series of plant protection products (PPPs) comprising mesotrione, and a last one exposed to different PPPs including mesotrione and tembotrione, two ß-triketones. In this latter, the abundance of the hppd community varied over time. The diversity of the total and the hppd communities evolved over time independently from the treatment received. Only slight but significant transient effects on the abundance of the hppd community in one of the tested soil were observed. Our results showed that tested ß-triketones have no visible impact toward both total and hppd soil bacteria communities.

14.
Head Neck ; 42(4): 763-773, 2020 04.
Article in English | MEDLINE | ID: mdl-31762119

ABSTRACT

The use of predictive models is becoming widespread. However, these models should be developed appropriately (CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modeling Studies [CHARMS] and Prediction model Risk Of Bias ASsessment Tool [PROBAST] statements). Concerning mortality/recurrence in oropharyngeal cancer, we are not aware of any systematic reviews of the predictive models. We carried out a systematic review of the MEDLINE/EMBASE databases of those predictive models. In these models, we analyzed the 11 domains of the CHARMS statement and the risk of bias and applicability, using the PROBAST tool. Six papers were finally included in the systematic review and all of them presented high risk of bias and several limitations in the statistical analysis. The applicability was satisfactory in five out of six studies. None of the models could be considered ready for use in clinical practice.


Subject(s)
Neoplasm Recurrence, Local , Oropharyngeal Neoplasms , Humans , Bias , Oropharyngeal Neoplasms/therapy , Research Design
15.
Eur J Cancer Care (Engl) ; 28(6): e13157, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31441567

ABSTRACT

INTRODUCTION: Predictive models must meet clinical/methodological standards to be used in clinical practice. However, no critique of those models relating to mortality/recurrence in tongue cancer has been done bearing in mind the accepted standards. METHODS: We conducted a systematic review evaluating the methodology and clinical applicability of predictive models for mortality/recurrence in tongue cancer published in MEDLINE and Scopus. For each model, we analysed (domains of CHARMS, Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies) the following: source of data, participants, outcome to be predicted, candidate predictors, sample size, missing data, model development, model performance, model evaluation, results and interpretation and discussion. RESULTS: We found two papers that included eight prediction models, neither of which adhered to the CHARMS recommendations. CONCLUSION: Given the quality of tongue cancer models, new studies following current consensus are needed to develop predictive tools applicable in clinical practice.


Subject(s)
Models, Statistical , Neoplasm Recurrence, Local , Tongue Neoplasms/mortality , Forecasting , Humans , Tongue Neoplasms/pathology
16.
Front Microbiol ; 10: 1618, 2019.
Article in English | MEDLINE | ID: mdl-31338089

ABSTRACT

Cover cropping plays a key role in the maintenance of arable soil health and the enhancement of agroecosystem services. However, our understanding of how cover crop management impacts soil microbial communities and how these interactions might affect soil nutrient cycling is still limited. Here, we studied the impact of four cover crop mixtures varying in species richness and functional diversity, three cover crop termination strategies (i.e., frost, rolling, and glyphosate) and two levels of irrigation at the cover crop sowing on soil nitrogen and carbon dynamics, soil microbial diversity, and structure as well as the abundance of total bacteria, archaea, and N-cycling microbial guilds. We found that total nitrogen and soil organic carbon were higher when cover crops were killed by frost compared to rolling and glyphosate termination treatments, while cover crop biomass was positively correlated to soil carbon and C:N ratio. Modifications of soil properties due to cover crop management rather than the composition of cover crop mixtures were related to changes in the abundance of ammonia oxidizers and denitrifiers, while there was no effect on the total bacterial abundance. Unraveling the underlying processes by which cover crop management shapes soil physico-chemical properties and bacterial communities is of importance to help selecting optimized agricultural practices for sustainable farming systems.

17.
Clin Otolaryngol ; 44(1): 26-31, 2019 01.
Article in English | MEDLINE | ID: mdl-30220101

ABSTRACT

OBJECTIVES: Though predictive models have been constructed to determine the risk of recurrence in differentiated thyroid carcinoma, various aspects of these models are inadequate. Therefore, we aimed to construct, internally validate and implement on a mobile application a scoring system to determine this risk within 10 years. DESIGN: A retrospective cohort study in 1984-2016. SETTING: A Spanish region. PARTICIPANTS: We enrolled 200 patients with differentiated thyroid carcinoma without distant metastasis at diagnosis. MAIN OUTCOME MEASURES: Time-to-recurrence. A risk table was constructed based on the sum of points to estimate the likelihood of recurrence. The model was internally validated and implemented as a mobile application for Android. RESULTS: Predictive factors were follicular histology, T, N and multifocality. This risk table had a C-statistic of 0.723. The calibration was satisfactory. CONCLUSIONS: This study provides an instrument able to predict rapidly and very simply which patients with differentiated thyroid carcinoma have a greater risk of recurrence.


Subject(s)
Mobile Applications , Thyroid Neoplasms/pathology , Female , Humans , Male , Middle Aged , Neoplasm Recurrence, Local , Predictive Value of Tests , Retrospective Studies , Risk Assessment , Spain
18.
Front Microbiol ; 9: 2721, 2018.
Article in English | MEDLINE | ID: mdl-30459749

ABSTRACT

There is a growing interest of overcoming the uncertainty related to the cumulative impacts of multiple disturbances of different nature in all ecosystems. With global change leading to acute environmental disturbances, recent studies demonstrated a significant increase in the possible number of interactions between disturbances that can generate complex, non-additive effects on ecosystems functioning. However, how the chronology of disturbances can affect ecosystems functioning is unknown even though there is increasing evidence that community assembly history dictates ecosystems functioning. Here, we experimentally examined the importance of the disturbances chronology in modulating the resilience of soil microbial communities and N-cycle related functions. We studied the impact of 3-way combinations of global change related disturbances on total bacterial diversity and composition, on the abundance of N-cycle related guilds and on N-cycle related activities in soil microcosms. The model pulse disturbances, i.e., short-term ceasing disturbances studied were heat, freeze-thaw and anaerobic cycles. We determined that repeated disturbances of the same nature can either lead to the resilience or to shifts in N-cycle related functions concomitant with diversity loss. When considering disturbances of different nature, we demonstrated that the chronology of compounded disturbances impacting an ecosystem determines the aggregated impact on ecosystem properties and functions. Thus, after 3 weeks the impact of the 'anoxia/heat/freeze-thaw' sequence was almost two times stronger than that of the 'heat/anoxia/freeze-thaw' sequence. Finally, we showed that about 29% of the observed variance in ecosystem aggregated impact caused by series of disturbances could be attributed to changes in the microbial community composition measured by weighted UniFrac distances. This indicates that surveying changes in bacterial community composition can help predict the strength of the impact of compounded disturbances on N-related functions and properties.

19.
Ecology ; 99(9): 2080-2089, 2018 09.
Article in English | MEDLINE | ID: mdl-29931744

ABSTRACT

Tropical forests exhibit significant heterogeneity in plant functional and chemical traits that may contribute to spatial patterns of key soil biogeochemical processes, such as carbon storage and greenhouse gas emissions. Although tropical forests are the largest ecosystem source of nitrous oxide (N2 O), drivers of spatial patterns within forests are poorly resolved. Here, we show that local variation in canopy foliar N, mapped by remote-sensing image spectroscopy, correlates with patterns of soil N2 O emission from a lowland tropical rainforest. We identified ten 0.25 ha plots (assemblages of 40-70 individual trees) in which average remotely-sensed canopy N fell above or below the regional mean. The plots were located on a single minimally-dissected terrace (<1 km2 ) where soil type, vegetation structure and climatic conditions were relatively constant. We measured N2 O fluxes monthly for 1 yr and found that high canopy N species assemblages had on average three-fold higher total mean N2 O fluxes than nearby lower canopy N areas. These differences are consistent with strong differences in litter stoichiometry, nitrification rates and soil nitrate concentrations. Canopy N status was also associated with microbial community characteristics: lower canopy N plots had two-fold greater soil fungal to bacterial ratios and a significantly lower abundance of ammonia-oxidizing archaea, although genes associated with denitrification (nirS, nirK, nosZ) showed no relationship with N2 O flux. Overall, landscape emissions from this ecosystem are at the lowest end of the spectrum reported for tropical forests, consist with multiple metrics indicating that these highly productive forests retain N tightly and have low plant-available losses. These data point to connections between canopy and soil processes that have largely been overlooked as a driver of denitrification. Defining relationships between remotely-sensed plant traits and soil processes offers the chance to map these processes at large scales, potentially increasing our ability to predict N2 O emissions in heterogeneous landscapes.


Subject(s)
Nitrogen/analysis , Nitrous Oxide , Ecosystem , Rainforest , Soil/chemistry
20.
ISME J ; 12(4): 1061-1071, 2018 04.
Article in English | MEDLINE | ID: mdl-29476139

ABSTRACT

Changes in frequency and amplitude of rain events, that is, precipitation patterns, result in different water conditions with soil depth, and likely affect plant growth and shape plant and soil microbial activity. Here, we used 18O stable isotope probing (SIP) to investigate bacterial and fungal communities that actively grew or not upon rewetting, at three different depths in soil mesocosms previously subjected to frequent or infrequent watering for 12 weeks (equal total water input). Phylogenetic marker genes for bacteria and fungi were sequenced after rewetting, and plant-soil microbial coupling documented by plant 13C-CO2 labeling. Soil depth, rather than precipitation pattern, was most influential in shaping microbial response to rewetting, and had differential effects on active and inactive bacterial and fungal communities. After rewetting, active bacterial communities were less rich, more even and phylogenetically related than the inactive, and reactivated throughout the soil profile. Active fungal communities after rewetting were less abundant and rich than the inactive. The coupling between plants and soil microbes decreased under infrequent watering in the top soil layer. We suggest that differences in fungal and bacterial abundance and relative activity could result in large effects on subsequent soil biogeochemical cycling.


Subject(s)
Bacteria/classification , Fungi/classification , Soil Microbiology , Bacteria/isolation & purification , Fungi/isolation & purification , Phylogeny , Plant Development , Rain , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...