Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 627(8004): 505-509, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38418881

ABSTRACT

The Double Asteroid Redirection Test (DART) had an impact with Dimorphos (a satellite of the asteroid Didymos) on 26 September 20221. Ground-based observations showed that the Didymos system brightened by a factor of 8.3 after the impact because of ejecta, returning to the pre-impact brightness 23.7 days afterwards2. Hubble Space Telescope observations made from 15 minutes after impact to 18.5 days after, with a spatial resolution of 2.1 kilometres per pixel, showed a complex evolution of the ejecta3, consistent with other asteroid impact events. The momentum enhancement factor, determined using the measured binary period change4, ranges between 2.2 and 4.9, depending on the assumptions about the mass and density of Dimorphos5. Here we report observations from the LUKE and LEIA instruments on the LICIACube cube satellite, which was deployed 15 days in advance of the impact of DART. Data were taken from 71 seconds before the impact until 320 seconds afterwards. The ejecta plume was a cone with an aperture angle of 140 ± 4 degrees. The inner region of the plume was blue, becoming redder with increasing distance from Dimorphos. The ejecta plume exhibited a complex and inhomogeneous structure, characterized by filaments, dust grains and single or clustered boulders. The ejecta velocities ranged from a few tens of metres per second to about 500 metres per second.

2.
Nature ; 598(7879): 49-52, 2021 10.
Article in English | MEDLINE | ID: mdl-34616055

ABSTRACT

Spacecraft missions have observed regolith blankets of unconsolidated subcentimetre particles on stony asteroids1-3. Telescopic data have suggested the presence of regolith blankets also on carbonaceous asteroids, including (101955) Bennu4 and (162173) Ryugu5. However, despite observations of processes that are capable of comminuting boulders into unconsolidated materials, such as meteoroid bombardment6,7 and thermal cracking8, Bennu and Ryugu lack extensive areas covered in subcentimetre particles7,9. Here we report an inverse correlation between the local abundance of subcentimetre particles and the porosity of rocks on Bennu. We interpret this finding to mean that accumulation of unconsolidated subcentimetre particles is frustrated where the rocks are highly porous, which appears to be most of the surface10. The highly porous rocks are compressed rather than fragmented by meteoroid impacts, consistent with laboratory experiments11,12, and thermal cracking proceeds more slowly than in denser rocks. We infer that regolith blankets are uncommon on carbonaceous asteroids, which are the most numerous type of asteroid13. By contrast, these terrains should be common on stony asteroids, which have less porous rocks and are the second-most populous group by composition13. The higher porosity of carbonaceous asteroid materials may have aided in their compaction and cementation to form breccias, which dominate the carbonaceous chondrite meteorites14.

3.
Nat Astron ; 3(4): 332-340, 2019.
Article in English | MEDLINE | ID: mdl-31360777

ABSTRACT

Early spectral data from the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission reveal evidence for abundant hydrated minerals on the surface of near-Earth asteroid (101955) Bennu in the form of a near-infrared absorption near 2.7 µm and thermal infrared spectral features that are most similar to those of aqueously altered CM carbonaceous chondrites. We observe these spectral features across the surface of Bennu, and there is no evidence of substantial rotational variability at the spatial scales of tens to hundreds of meters observed to date. In the visible and near-infrared (0.4 to 2.4 µm) Bennu's spectrum appears featureless and with a blue (negative) slope, confirming previous ground-based observations. Bennu may represent a class of objects that could have brought volatiles and organic chemistry to Earth.

4.
Space Sci Rev ; 214(1)2018 02.
Article in English | MEDLINE | ID: mdl-30713357

ABSTRACT

OSIRIS-REx will return pristine samples of carbonaceous asteroid Bennu. This article describes how pristine was defined based on expectations of Bennu and on a realistic understanding of what is achievable with a constrained schedule and budget, and how that definition flowed to requirements and implementation. To return a pristine sample, the OSIRIS-REx spacecraft sampling hardware was maintained at level 100 A/2 and <180 ng/cm2 of amino acids and hydrazine on the sampler head through precision cleaning, control of materials, and vigilance. Contamination is further characterized via witness material exposed to the spacecraft assembly and testing environment as well as in space. This characterization provided knowledge of the expected background and will be used in conjunction with archived spacecraft components for comparison with the samples when they are delivered to Earth for analysis. Most of all, the cleanliness of the OSIRIS-REx spacecraft was achieved through communication among scientists, engineers, managers, and technicians.

6.
J Phys Chem A ; 111(49): 12611-9, 2007 Dec 13.
Article in English | MEDLINE | ID: mdl-17988107

ABSTRACT

The study of the formation of molecular hydrogen on low-temperature surfaces is of interest both because it enables the exploration of elementary steps in the heterogeneous catalysis of a simple molecule and because of its applications in astrochemistry. Here, we report results of experiments of molecular hydrogen formation on amorphous silicate surfaces using temperature-programmed desorption (TPD). In these experiments, beams of H and D atoms are irradiated on the surface of an amorphous silicate sample. The desorption rate of HD molecules is monitored using a mass spectrometer during a subsequent TPD run. The results are analyzed using rate equations, and the energy barriers of the processes leading to molecular hydrogen formation are obtained from the TPD data. We show that a model based on a single isotope provides the correct results for the activation energies for diffusion and desorption of H atoms. These results are used in order to evaluate the formation rate of H2 on dust grains under the actual conditions present in interstellar clouds. It is found that, under typical conditions in diffuse interstellar clouds, amorphous silicate grains are efficient catalysts of H2 formation when the grain temperatures are between 9 and 14 K. This temperature window is within the typical range of grain temperatures in diffuse clouds. It is thus concluded that amorphous silicates are good candidates to be efficient catalysts of H2 formation in diffuse clouds.

7.
Orig Life Evol Biosph ; 36(5-6): 451-7, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17120116

ABSTRACT

We have studied the effects of the substrate, namely amorphous olivine (MgFeSiO(4)) cosmic dust analogues (CDAs), in synthesis of molecules obtained after 200 keV proton irradiation of formamide (NH(2)COH). Formamide has been deposited on the olivine substrate at 20 K. The abundances of new molecular species formed after an irradiation dose of 12 eV/16 amu in formamide pure (i.e. deposited on an inert silicon substrate) and deposited on CDAs have been compared. Specifically, MgFeSiO(4) amorphous olivine is a selective catalyst preventing formation of NH(3) and CN(-) molecules and changing the relative abundances of NH4(+)OCN(-), CO(2), HNCO, CO. We have shown that the role of CDAs has to be taken into account in experiments simulating processes occurring in astronomical environments.


Subject(s)
Cosmic Dust/analysis , Extraterrestrial Environment/chemistry , Inorganic Chemicals/chemistry , Ammonia/chemistry , Astronomical Phenomena , Astronomy , Catalysis , Cyanides/chemistry , Evolution, Chemical , Formamides/chemistry , Iron Compounds/chemistry , Magnesium Compounds/chemistry , Silicates/chemistry , Spectrophotometry, Infrared
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 57(4): 787-95, 2001 Mar 15.
Article in English | MEDLINE | ID: mdl-11345254

ABSTRACT

Carbon and silicate grains are the two main components of cosmic dust. There is increasing spectroscopic evidence that their composition varies according to the cosmic environment and the experienced processing. Irradiation from ultraviolet photons and cosmic rays, as well as chemical interactions with the interstellar gas play a crucial role for grain transformation. The study of 'laboratory analogues' represents a powerful tool to better understand the nature and evolution of cosmic materials. In particular, simulations of grain processing are fundamental to outline an evolutionary pathway for interstellar particles. In the present work, we discuss the ultraviolet and infrared spectral changes induced by thermal annealing, ultraviolet irradiation, ion irradiation and hydrogen atom bombardment in carbon and silicate analogue materials. The laboratory results give the opportunity to shed light on the long-standing problems of the attribution of ultraviolet and infrared interstellar spectral features.


Subject(s)
Carbon/chemistry , Cosmic Dust/analysis , Silicates/chemistry , Astronomical Phenomena , Astronomy , Clinical Laboratory Techniques , Crystallization , Space Simulation
9.
Adv Space Res ; 24(4): 439-42, 1999.
Article in English | MEDLINE | ID: mdl-11543328

ABSTRACT

Laboratory simulations of carbonaceous grain processing which occurs in space are fundamental to outline an evolutionary pathway for these particles. We consider the UV spectral changes induced in hydrogenated carbon grains by thermal annealing, UV irradiation and ion bombardment. The results give the opportunity to interpret observations in different space environments. In particular, modelling of the optical properties, based on a description of the electronic structure of carbons, indicates small hydrogenated amorphous carbon grains, with different degrees of UV irradiation, as the carrier of the ubiquitous UV interstellar extinction bump.


Subject(s)
Carbon/chemistry , Cosmic Dust , Extraterrestrial Environment , Models, Chemical , Ultraviolet Rays , Carbon/radiation effects , Cosmic Radiation , Exobiology , Hot Temperature , Photochemistry , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...