Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Acoust Soc Am ; 150(5): 3569, 2021 11.
Article in English | MEDLINE | ID: mdl-34852576

ABSTRACT

Estimates of abundance and their changes through time are key elements of marine mammal conservation and management. Absolute marine mammal abundance in a region of the open ocean is often difficult to attain. However, methods of estimating their abundance based on passive acoustic recordings are becoming increasingly employed. This study shows that passive acoustic monitoring of North Atlantic minke whales with a single hydrophone provides sufficient information to estimate relative population abundance. An automated detector was developed for minke whale pulse trains and an approach for converting its output into a relative abundance index is proposed by accounting for detectability as well as false positives and negatives. To demonstrate this technique, a 2 y dataset from the seven sites of the Atlantic Deepwater Ecosystem Observatory Network project on the U.S. east coast was analyzed. Resulting relative abundance indices confirm pulse train-calling minke whale presence in the deep waters of the outer continental shelf. The minkes are present December through April annually with the highest abundance near the site offshore of Savannah, Georgia.


Subject(s)
Minke Whale , Acoustics , Animals , Atlantic Ocean , Ecosystem
2.
JASA Express Lett ; 1(8): 081201, 2021 08.
Article in English | MEDLINE | ID: mdl-36154245

ABSTRACT

In the original paper [JASA Express Lett. 1(1), 011203 (2021)], a method for processing, storing, and sharing high-bandwidth, passive acoustic spectral data that optimizes data volume while maintaining reasonable data resolution was proposed. The format was a hybrid that uses 1-Hz resolution up to 455 Hz and millidecade frequency bands above 455 Hz. The choice of 455 Hz was based on a method of computing the edge frequencies of millidecade bands that is not compatible with summing millidecades to decidecades. This has been corrected. The new transition frequency is the first frequency with a millidecade with greater than 1 Hz, 435 Hz.

3.
J Acoust Soc Am ; 148(1): 278, 2020 07.
Article in English | MEDLINE | ID: mdl-32752755

ABSTRACT

The problem of estimating spatial distribution and density of vocalizing marine animals is addressed. The proposed solution is based on using a fixed compact array of synchronized hydrophones and statistically optimal detection and estimation algorithms. The closed-form representations of the practical algorithms are presented. The performance of the proposed technique is evaluated analytically and using statistical simulations. The case study involved identifying an area of high residency and estimating the density of vocalizing beluga whales in the St. Lawrence Estuary. The advantages and disadvantages of the proposed technique are demonstrated and the future steps are discussed.


Subject(s)
Whales , Animals
4.
J Acoust Soc Am ; 147(6): 3985, 2020 06.
Article in English | MEDLINE | ID: mdl-32611141

ABSTRACT

The aim of underwater noise exposure criteria in a regulatory context is to identify at what received levels noise-induced effects are predicted to occur, so that those effects may be appropriately considered in an evaluation or mitigation context under the respective regulatory regime. Special emphasis has been given to hearing related impairment of marine mammals due to their high sensitivity to and reliance on underwater sound. Existing regulations of underwater noise show substantial qualitative and quantitative discrepancies. A dataset acquired during an experiment that induced temporary threshold shift (TTS) in a harbor porpoise (Phocoena phocoena) from Lucke, Siebert, Lepper, and Blanchet [(2009). J. Acoust. Soc. Am. 125, 4060-4070] was reanalyzed to see if various exposure criteria predicted TTS differently for high-frequency cetaceans. This provided an unambiguous quantitative comparison of predicted TTS levels for the existing noise exposure criteria used by regulatory bodies in several countries. The comparative evaluation of the existing noise exposure criteria shows substantial disagreement in the predicted levels for onset for auditory effects. While frequency-weighting functions evolved to provide a better representation of sensitivity to noise exposure when compared to measured results at the criteria's onset, thresholds remain the most important parameter determining a match between criteria and measured results.


Subject(s)
Caniformia , Phocoena , Animals , Auditory Threshold , Noise/adverse effects , Sound , Sound Spectrography
5.
J Nematol ; 44(4): 337-47, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23482422

ABSTRACT

One hundred and eleven golf courses from 39 counties in the Carolinas were surveyed for plant-parasitic nematodes. Species diversity within habitats was analyzed with five diversity indices including Diversity index (H'), Evenness (J'), Richness (SR), Dominance (λ) and Diversity (H2 ). The results revealed a remarkably high diversity of 24 nematode species belonging to 19 genera and 11 families. Of those, 23 species were found in SC, 19 species in NC, and 18 species were detected in both states. Helicotylenchus dihystera, Mesocriconema xenoplax, Hoplolaimus galeatus, Tylenchorhynchus claytoni, Belonolaimus longicaudatus, Meloidogyne graminis and Paratrichodorus minor were the most prevalent and abundant species in golf course turfgrasses in both states. Twelve species were new records of plant parasitic nematodes in turfgrasses in both NC and SC. The results also revealed effects of different habitats on diversity of nematode species in turfgrass ecosystem. H' and SR values were higher in SC than in NC. H', J' and H2 values were significantly higher in sandy than in clay soil in NC, but no significant differences between sand and clay soil were detected in SC or in pooled data from both states. There were no significant differences for all indices among the management zones (putting green, fairway and tee) in NC. However, in SC and pooled data, H', SR and H2 were significantly higher in putting greens than in fairways and tees. Significant differences from different grass species (bermudagrass, creeping bentgrass and zoysiagrass) were detected only in H', which was significantly higher in zoysiagrass than in bentgrass or bermudagrass in NC. In pooled data, H' was significantly higher in zoysiagrass samples than in creeping bentgrass samples but was not significantly different from bermudagrass samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...